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Abstract. Real-time road-scene understanding is a challenging computer 

vision task with recent advances in convolutional neural networks (CNN) 
achieving results that notably surpass prior traditional feature driven approaches. 
Here, we take an existing CNN architecture, pre-trained for urban road-scene 
understanding, and retrain it towards the task of classifying off-road scenes, 
assessing the network performance during the training cycle. Within the 
paradigm of transfer learning we analyse the effects on CNN classification, by 
training and assessing varying levels of prior training on varying sub-sets of our 
off-road training data. For each of these configurations, we evaluate the network 
at multiple points during its training cycle, allowing us to analyse in depth exactly 
how the training process is affected by these variations. Finally, we compare this 
CNN to a more traditional approach using a feature-driven Support Vector 
Machine (SVM) classifier and demonstrate state-of-the-art results in this 
particularly challenging problem of off-road scene understanding. 

1 Introduction 
Scene understanding is a vital step in an autonomous vehicle processing pipeline, but 

this can be especially challenging in an off-road, unstructured environment. Knowledge 
about upcoming terrain and obstacles is necessary for deciding on the optimum path 
through such an environment, and can also be used to inform vehicle driving parameters 
to improve traction, efficiency and maximise passenger comfort and safety. 

Whole scene understanding is a well-discussed problem with applications in many 
domains [1, 2]. Recent contributions have used convolutional neural network (CNN) 
based approaches to achieve state-of-the-art results [3], while approaches combining 
hand-crafted features with linear classifiers have been somewhat side-lined [4]. 

Work in the domain of scene understanding for autonomous vehicles has followed 
this trend [5, 6], however there is very little work applying deep-learning techniques to 
the more challenging off-road environment. This paper aims to assess the applicability 
to such an environment of a state-of-the-art CNN architecture that was originally 
designed and trained to perform per-pixel classification on urban road scene images [6]. 

Within this work we perform transfer learning, taking a CNN architecture that has 
already been originally trained to classify a large, often more generic data set and re-
training it from this initialization to a more specific or alternative task (for which data 
is often more limited). In this case, a CNN trained for urban street scene classification 
is subsequently re-trained with a smaller, more specialised data set of off-road scenes. 
The idea is that the weights learned on the larger data set act to build a set of generic 
image filters that can be easily adapted for the task of classifying the more specialised 
imagery used later [7]. Transfer learning is generally thought to be beneficial when 
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training with a small specialised data set or when the time to train a new network from 
scratch is not available, so we investigate the effects of data set size and training time 
on the classification performance of networks that have performed different amounts 
of pre-training or no pre-training at all. 

Most existing work in the area of off-road classification does not make use of deep-
learning techniques: the approach described in [8] aims to classify different parts of a 
colour image of an off-road scene using Gaussian Mixture Models, while the approach 
outlined in [9] uses a combination of features from colour imagery and 3D geometry 
from a laser rangefinder to classify the different parts of an off-road scene. 

For comparison with our CNN based approach, we use a method based on the state-
of-the-art object category retrieval work in [10]: dense gradient features are clustered 
to build a histogram encoding that is fed into a support vector machine (SVM) [11] for 
classification. 
2 Methodology 

We primarily propose a convolutional neural network approach and compare this to 
a secondary support vector machine approach for relative performance evaluation. 
2.1 CNN Architecture 

The convolutional neural network architecture we use is nearly identical to the 
‘Segnet’ architecture described in [6], with only minor changes made to the final layer 
of the network in order to output eight classes and to adjust the class weightings for our 
off-road data set. Similar network architectures exist [3], however we down-selected 
Segnet due to the focus of its creators on autonomous vehicle applications and its ability 
to perform real-time classification. 

The Segnet architecture is visualised in Fig. 1. It is comprised of a symmetrical 
network of thirteen ‘encoder’ layers followed by thirteen ‘decoder’ layers. The encoder 
layers correspond to the convolution and pooling layers of the VGG16 [12] object 
classification network, while the decoder layers up-sample their input so that the final 
output from the network has the same dimensions as the input image. During the 
encoding phase, each pooling layer down-samples its input by a factor of two and stores 
the location of the maximum value from each 2 x 2 pooling window. During the 
decoding phase, these locations are used by the corresponding up-sampling layer to 

 Fig. 1. Architecture of the Segnet Convolutional Neural Network [6]. The encoder 
network, consisting of convolution and pooling layers, is followed by a mirror-image 
decoder network, consisting of convolution and up-sampling layers  
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populate a sparse feature map, with the convolution layers on the decoder side trained 
to fill the gaps. This technique facilitates full pixel-wise classification to be achieved in 
real-time, making Segnet an ideal architecture for use in further autonomous vehicle 
applications. 
2.2 CNN Training 

We begin by training the network on the Camvid dataset [13] that was used by the 
original authors to assess Segnet. By training on a large, well labelled dataset that has 
already been shown to work well with this network architecture we can ensure that our 
network learns a set of weights that are relevant to a vehicular scene understanding task. 
We then perform transfer learning, retraining the network on our own off-road data so 
that it can adjust its weights to better suit an off-road environment and discriminate 
between the classes present in these scenes. 

The benefits of transfer learning are in the ease with which an existing trained 
network can be adapted to a new specialised task. The time taken to train the network 
and learn optimum weights should be greatly reduced when compared to a network 
being trained from scratch with randomly initialised weights. In cases where the 
specialised data set is small or only partially labelled, a network trained from a random 
starting point may never achieve satisfactory results, however by performing the bulk 
of training with a larger set of data and only utilising the specialised data set for the last 
few iterations, a better outcome can be achieved [7]. 

In our case, the initial training data consists of 367 labelled images of urban street 
scenes from the Camvid data set, resized to a resolution of 480 x 360. An example 
image from the dataset, along with its annotations, can be seen in Fig. 2. The original 
authors chose eleven pixel classes for the Segnet classification task, {sky, building, pole, 
road marking, road, pavement, tree, sign, fence, car, pedestrian, and bicycle}. As the 
network architecture performs classification of every pixel, this gives us up to 172,800 
samples per image, or 63,417,600 samples in total. In practice, the total is slightly less 
than this as some images have pixels that do not fit into any of the eleven original 
classes and are labelled 'void'. 

Our off-road data consists of 332 images captured by a vehicle mounted camera 
driven at two different off-road driving facilities encompassing a variety of 
environments, which we split into roughly 90% training data and 10% test data, giving 

 Fig. 2. An example image from the Camvid dataset along with its annotations  
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us 295 training images. For the CNN, our images have been resized to the same 
resolution of 480 x 360 as the Camvid images. We identified 8 pixel class labels for our 
off-road data set, {sky, water, dirt, paved road, grass, foliage, tree, and man-made 
obstacle}, 3 of which also existed in the Camvid data. 

Fully labelling every pixel in even a small set of images can be very time consuming, 
so we only partially label our training images to assess whether good classification 
results can still be achieved without full labelling. Our labelling strategy consists of 
hand drawing a shape that is entirely contained by, but not touching the edges of, each 
image segment. Every pixel within that shape is then considered a member of the 
chosen class. Another reason this approach was chosen is the lack of clear boundaries 
to delineate classes in off-road scenes, for example when a muddy surface gradually 
gives way to gravel, or where long grass becomes foliage. This provided us with a total 
of 35,016,288 labelled pixels for training, with the rest of the pixels (roughly 31% of 
the total) labelled as void so that the network would ignore them. An example image 
from our dataset, along with its annotations, can be seen in Fig. 3. For testing our 
classification results, we use one set of 37 images labelled in the same manner, as well 
as another set of 4 fully labelled images. Fig. 4 shows the partial and fully labelled 
versions of one of our test images. 

To test the effects of transfer learning when the specialised training is carried out with 
a small data set, we train several versions of the network using different sized subsets 
of this data, one each containing 140, 70, 35, 17, and 8 of the original images. 

Snapshots are taken at several points during the Camvid training, so that we can 
observe the effects of different amounts of pre-training. Seven versions of the network 
will be trained and assessed on our off-road dataset: one which has been randomly 
initialised with no prior training, along with networks trained for 1000, 2000, 5000, 
10,000, 20,000 and 30,000 iterations on the Camvid data. Our training is performed on 
an NVidia Tesla K40 GPU, taking roughly one hour per thousand training iterations. 
2.3 Support Vector Machine 

For comparison, we train a SVM to classify the same data using dense gradient 

 Fig. 3. An example image from our off-road dataset next to its partially labelled training 
image  
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features, based on the approach used in [10] for object classification. For our approach 
we classify image segments, as this allows us to cluster feature points to build up a bag-
of-words vocabulary.  The segments in this case are those created manually while 
labelling the data, as in this case we are only interested in the performance of the 
classifier itself and so a perfect segmentation is assumed. In practice, an imperfect 
segmentation algorithm could be used, potentially leading to errors in the segmentation 
that could impact classifier performance. 

To ensure enough local gradient information is available at each feature point, we use 
images with a resolution of 1280 x 720, higher than those used to train the CNN. The 
memory and time that would be required to train the CNN using images at this 
resolution would be infeasibly high, however by clustering our features before passing 
them to the SVM, the size of data it uses to train and classify is constant per data sample 
regardless of image resolution. 

Our labelled data set gives us 5664 labelled segments, which we split into 90% for 
training data and 10% for testing data. We ignore any samples too small to provide at 
least 50 feature points, leaving us with between 3000 and 4000 viable segments, 
depending on the feature grid density used. 

We train a Support Vector Machine for a maximum of 20,000 iterations using a radial 
basis function to perform a grid search over the kernel parameter space. 

Dense Feature Descriptors. A dense grid of feature points is computed for each 
segment. The grid density, g pixels between grid nodes in both x and y direction, is 
chosen empirically by testing values between 2 and 10 pixels. Generally, a denser grid 
should contain a greater amount of information at the expense of computation time, so 
a lower number should give better results in most cases. 

The Speeded Up Robust Features (SURF) algorithm [14] is used to create a descriptor 
for each remaining grid node. A SURF descriptor computes Haar wavelet responses 
within a square region around the initial point, which are summed to produce a vector 
describing the intensity distribution of pixels within the region. This results in either a 
128 or 64 dimension vector that describes the local texture. Empirically we found a 64 
dimension vector to give better results at this task. Every SURF descriptor is computed 
at the same orientation of 0 radians with a radius of r pixels. r is chosen empirically 
after assessing classification results using a range of values from 2 to 20 pixels. 

 Fig. 4. Partial and fully labelled versions of the same image from our off-road data set. 
Fully manually annotating an image like this can take a person several hours, while a 
partially annotated image can be created in a few minutes. In our partially labelled training 
set, 69% of pixels are labelled  
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Feature Encoding. Descriptors resulting from grid-wise feature extraction over a 
given segment are encoded into a fixed length vector for subsequent classification. 

We use a histogram encoding (traditional bag-of-words [15]) approach: for histogram 
encoding, we first use K-means clustering to create a visual vocabulary, or bag of 
words, of K clusters within the 64 dimensional space of our SURF descriptors. For each 
segment, a histogram is computed accumulating the number of its SURF descriptors 
assigned to each cluster within the vocabulary. This histogram is normalised to provide 
a K-dimensional descriptor for the segment as the input feature vector to the SVM. The 
optimum value for K is chosen empirically, after testing values from 200 to 1600. 
3 Results 

We evaluate our classifiers using two sets of test data: a set of images partially 
labelled in the same manner as our training data, and a smaller set that are fully labelled 
(i.e. every single pixel in the image is labelled). The output layer of the CNN assigns a 
label to every pixel, while the SVM outputs a label for each segment. Fig. 5 shows 
some example images with their respective CNN outputs and ground truth annotations. 

Due to the lack of clearly defined boundaries in some areas of off-road scenes, there 
exist some pixels could have more than one correct label in terms of true ground truth. 
This should not have much effect on the partially labelled data, as boundary regions 
remain largely unlabelled, however this is likely to have a negative effect on 
classification results when testing against fully labelled data. To limit this effect, when 
deciding whether a pixel is correctly labelled we search for a match within a 5 pixel 
radius in the ground truth image. When testing with partially labelled data, a pixel is 
only labelled correctly if a match is found at its exact location in the ground truth image. 

When discussing the CNN, unless stated otherwise, accuracy is defined as the number 
of correctly labelled pixels divided by the total number of labelled pixels in the test 

 Fig. 5. Results from the CNN after 30,000 iterations of pre-training and 10,000 iterations 
of training with the full off-road dataset. The middle row shows the fully annotated test 
images for comparison, and class colour labels are shown below 
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data. When discussing the SVM, accuracy is defined as the number of correctly labelled 
segments divided by the total number of labelled segments in the test data. 
3.1 CNN with Partially Labelled Test Data 

First we compare classification accuracy from training the network on our full off-
road data set as well as smaller subsets thereof after different amounts of pre-training, 
and testing on our partially labelled test data set.  

Pre-Training Iterations. Table 1 shows the performance of the network on Camvid 
test data before any training with off-road data, with accuracy recorded at the six points 
from which transfer learning was to be performed. As the Camvid data is mostly fully 
labelled, we use the same measure of accuracy as we use with our fully labelled off-
road test data set, wherein a label is deemed to be correct if it is within a 5 pixel radius 
of a similarly labelled pixel in the ground truth image.  

These results demonstrate the network has rapid performance improvement over its 
first 10,000 training iterations, followed by a slower but consistent improvement in 
performance during later training iterations. 

Fig. 6 shows the results achieved by each pre-trained version of the network on our 
full data set. Each version of the network was trained for 10,000 iterations, with a 
snapshot taken and accuracy recorded first at every 100 iterations, then at every1000 
iterations. 

The results show that the first few thousand iterations clearly benefit from transfer 
learning, with the networks that have performed a greater amount of pre-training 
generally performing better. However, by 5000 iterations of training, even the network 
initialised with random weights has achieved an accuracy of close to 0.9, beyond which 
there is very little improvement from any of the networks.  

 
Fig. 6. Comparison of training progress for networks that have undergone different 

amounts of pre-training on the Camvid urban data set. We plot classification accuracy at 
every 100th iteration during training with our off-road data set for the first 1000 iterations, 
then at every further 1000th iteration until 10,000 iterations have been trained 

Table 1. Accuracy of the CNN on the Camvid test data at the points when snapshots are 
taken to perform transfer learning 

Iterations Trained 1000 2000 5000 10000 20000 30000 
Classification Accuracy 0.31 0.36 0.48 0.68 0.75 0.79 
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As the training continues, the networks pre-trained for longer give marginally better 
results. The highest accuracy achieved is 0.917, which comes after 8000 iterations of 
the network that was pre-trained for 30,000 iterations. The networks pre-trained for 
20,000 and 30,000 iterations show very similar results throughout the training, 
suggesting a limit to the performance gains that can be achieved by pre-training. 

Training was continued up to 20,000 iterations with each network, however this gave 
no further increase in accuracy and so only the first 10,000 iterations are shown. 

It is interesting to note that our results surpass those achieved by their respective 
networks on the Camvid test data within a few hundred iterations, and then go on to 
perform significantly better. This could partly result from our data-set containing fewer 
classes (8 vs 11). Another factor could be our partially labelled test data, which features 
very few class boundary regions, however further testing with fully labelled data shows 
similar performance. It is possible that partially labelled training data could lead to a 
better performing classifier due to the lack of potentially confusing boundary pixels, 
although to fully test this we would need to compare these results to those obtained by 
training an identical network with a fully labelled version of the same data set, which 
is beyond the scope of this paper.  

Data Set Size. To consider the effect the amount of training data used has on 
classification, we train networks using five different sized subsets of our training data, 
containing 140, 70, 35, 17 and 8 images, both with and without pre-training. Fig. 7 
compares results for three of these subsets, each trained for 10,000 iterations. 

 The effects of transfer learning are similar: for the first 1000 iterations, the benefits 
of pre-training are clear, however after just a few thousand more, both pre-trained and 
un-pre-trained networks have achieved close to their optimum performance. As training 
progresses, the pre-trained network consistently outperforms the non-pre-trained 
network by a small margin, which generally increases as the dataset size decreases: 
After 10,000 iterations with a dataset of 140 images, the accuracy of the pre-trained 
network is just 0.01 better than the un-pre-trained network, while with the dataset of 8 
images, this margin increases to 0.09 

Per Class Results. We now discuss in more detail the results from the CNN trained 
for 10,000 iterations on the full data set after 30,000 iterations of pre-training. This is 
the network configuration that we would expect to typically perform best, with the 
highest amount of pre-training and largest data set, and it consistently achieves an 
accuracy of 0.91 against our partially labelled test data once it has passed 5000 

 
Fig. 7. Comparing pre-trained and non-pre-trained networks using different sized subsets 

of our off-road data set 
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iterations. Fig. 8 shows the proportion of pixels belonging to each class that were given 
each possible incorrect label. 

The most common misclassifications are between grass, foliage and trees, which is 
understandable given their visual similarities. Proportionally to class size, the largest is 
the 20.5% of pixels containing Man Made Obstacles that are misclassified as Tree. This 
is likely because many of the man-made obstacles in the off-road environment, such as 
fences, posts and gates, are made of wood and so have a similar appearance to trees. 

 Fig. 9 plots the precision and recall of each class along with the proportion of the 
training data set that each class makes up. The foliage class performed worst, likely due 
to its visual similarity to both grass and trees, while sky gave the best results. Camera 
exposure was set to capture maximum detail at ground level, so in most instances the 
sky is much brighter than the rest of the scene, which combined with its lack of high 

 Fig. 8. Misclassified pixels, per class, as a percentage of the total number of pixels 
belonging to that class (correctly labelled pixels are not shown) 
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 Fig. 9. Per class statistics for the CNN classifier. CNN was trained for 10,000 iterations 
on the full off-road data set after 30,000 iterations of pre-training. Testing was performed on 
the partially labelled testing set. As well as class precision and recall, we plot the number of 
pixels comprising each class within the training data as a proportion of the total number of 
labelled pixels in the set 
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frequency detail and consistent placement at the top of an image makes it easily 
distinguishable from other classes.  

For the most part, classes that achieve high precision also achieve high recall, 
however man-made obstacle is an exception, with a very high precision (0.92) but 
lowest overall recall (0.613), meaning very few pixels are misclassified as man-made 
obstacle, while many pixels which should be labelled man-made obstacle are not. The 
fact that it is the class with fewest training samples (1.7% of the data set) is likely to 
have played a part in this, as well as its visual similarity to trees, as discussed above.  

There would appear to be some correlation between the frequency of a class within 
the data set and its recall, possibly because of the way the output is weighted towards 
classes that appear more often. 
3.2 Fully Labelled Test Images 

Currently we have only discussed the results obtained through testing the CNN 
classifier against partially labelled data, thus we also test it against a set of fully 
annotated images to demonstrate that it can achieve similar results. 

Fig. 10 show the results obtained, and demonstrates that testing with fully labelled 
images yields results very similar to those of the partially labelled set. The highest 
accuracy seen was with the network pre-trained for 5,000 iterations, with an accuracy 
of 0.924 after 8000 iterations of training with the full off-road data set. 

Interestingly, the network snapshots that perform poorly on the partially labelled set 
(i.e. those that have not yet been through enough training iterations or have only been 
trained on a small data set) tend to perform worse on the fully labelled images. By 
contrast, those that perform well on the partially labelled data exhibit less deterioration, 
and in some cases even demonstrate an improvement in accuracy, when the fully 
labelled set is used. This would appear to suggest that a more comprehensively trained 
network performs much better in class boundary regions.  

Another point of note is that with the partially labelled data set, a network that had 
undergone greater pre-training would almost always perform better, however, when 
testing with the fully labelled data set, the networks that have undergone 5000 and 
10,000 pre-training iterations consistently outperform those with 20,000 and 30,000 
iterations, although only by a very small margin, at the later stages of training. This 
could be because the networks that have undergone more pre-training begin to overfit 
to the data they were originally trained on. The fact that this only occurs when the fully 
labelled data is used might suggest that this overfitting only has a noticeable effect when 

 Fig. 10. Classification results using the fully labelled test set, comparing networks that 
have undergone different amounts of pre-training on the Camvid urban data set 
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classifying class boundary regions, which are not present in the partially labelled data. 
3.3 SVM 

For comparison, we test the SVM approach on its ability to classify segments from 
our off-road data set. The SVM parameters are automatically optimised through cross-
validation, however we test several different configurations for the features that we pass 
into the classifier. The parameters that we alter are g, the number of pixels between 
feature points in our grid, r, the radius in pixels around each feature point that our 
descriptors take account of, and K, the number of clusters used to build our bag-of-
words representation. Fig.11 shows several comparisons to demonstrate how 
performance is affected. 

We would expect a decrease in g to improve results, as a greater amount of detail is 
being considered. This partly holds true in our results, although not consistently so. As 
r changes, we initially see a consistent improvement in results, which begins to tail off 
after a while. This is likely because with r set too restrictively, each feature point only 
has access to a limited region of local gradient information. By contrast, with r set too 
large, high frequency detail is lost as the descriptor is built from a greater number of 
pixels. The optimum value appears to be around r = 10. The general trend for K is that 
larger is better, but memory and time constraints make too large a value impractical.  

The best result attained by the SVM was an accuracy of 0.813, using the parameters 
g = 6, r = 12, K = 1400. 

To properly compare SVM and CNN performance, we adapted our CNN classifier to 
label whole segments. This was done by winner-takes-all vote of pixel labels within the 
segment. Fig. 12 shows the segment classification results as the CNN is trained after 
different amounts of pre-training. The CNNs pre-trained for 10,000 or more iterations 

 Fig. 11. Results from SVM classifier using various feature configurations. K represents 
the number of clusters used for bag-of-words encoding, g is the density of feature grid, i.e. 
number of pixels in both the x and y direction between feature points, and r is the radius, in 
pixels, of the area that each feature point takes account of when building its SURF descriptor  
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all achieve results better than those of the SVM before 1000 iterations, and by 2000 
iterations all, including the CNN that has undergone no pre-training, have surpassed the 
SVM. After further training, segment classification results are very similar to those for 
pixel classification, peaking at around 0.91, confirming that the CNN is significantly 
more effective at this classification task than the SVM. 
4 Conclusions 

This work demonstrates how an existing deep convolutional neural network 
classification and segmentation architecture can be adapted to segment and classify off-
road scenes. We have shown how quickly the network can learn to classify new kinds 
of images, and visualised CNN training performance by testing classification accuracy 
throughout the cycle, allowing us to compare networks as training progresses to show 
the effects that transfer learning and data-set size can have on performance. 

Notably, we have demonstrated that pre-training is of limited utility when a large data 
set is used for a long training period. While pre-training was shown to improve 
performance when smaller data sets were used, results were still well below those 
observed with larger training data, even without pre-training, suggesting that pre-
training is no substitute for an adequately sized data set. Pre-training was also shown 
to improve results early in the training cycle, although as training continues these 
effects diminish until a network with no pre-training will almost match the performance 
of a pre-trained one. In our testing, this happened as early as 5000 iterations, which 
represents just 5 hours of training. However, our results have shown that networks that 
have undergone more pre-training tend to perform marginally better, even after many 
iterations of training, however the results obtained from our fully labelled test set appear 
to show the opposite effect above 5000 iterations of pre-training, suggesting that there 
is a limit. With that in mind, it would appear the optimum configuration of CNN for 
this task, using the Segnet architecture [6] and trained on our full off-road data set, is 
around 10,000 iterations of pre-training followed by 10,000 iterations of training. 

Our results show that such a CNN can outperform a SVM based classifier using dense 
gradient features by a significant margin, even after a limited amount of training 

 Fig. 12. Training progress of the CNN after different amounts of pre-training, measured 
as accuracy on the segment classification task for comparison to the SVM classifier 
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