711 research outputs found

    Modelling of plasmas used for etching semiconductors

    Get PDF

    FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel

    Get PDF
    Hair cells in mouse cochlear cultures are selectively labeled by brief exposure to FM1-43, a styryl dye used to study endocytosis and exocytosis. Real-time confocal microscopy indicates that dye entry is rapid and via the apical surface. Cooling to 4°C and high extracellular calcium both reduce dye loading. Pretreatment with EGTA, a condition that breaks tip links and prevents mechanotransducer channel gating, abolishes subsequent dye loading in the presence of calcium. Dye loading recovers after calcium chelation with a time course similar to that described for tip-link regeneration. Myo7a mutant hair cells, which can transduce but have all mechanotransducer channels normally closed at rest, do not label with FM1-43 unless the bundles are stimulated by large excitatory stimuli. Extracellular perfusion of FM1-43 reversibly blocks mechanotransduction with half-blocking concentrations in the low micromolar range. The block is reduced by high extracellular calcium and is voltage dependent, decreasing at extreme positive and negative potentials, indicating that FM1-43 behaves as a permeant blocker of the mechanotransducer channel. The time course for the relief of block after voltage steps to extreme potentials further suggests that FM1-43 competes with other cations for binding sites within the pore of the channel. FM1-43 does not block the transducer channel from the intracellular side at concentrations that would cause complete block when applied extracellularly. Calcium chelation and FM1-43 both reduce the ototoxic effects of the aminoglycoside antibiotic neomycin sulfate, suggesting that FM1-43 and aminoglycosides enter hair cells via the same pathway

    Katrina consequences assessment and projection report

    Get PDF
    (PDF contains 50 pages

    Phase II Low Intensity Chemical Dosing (LICD): Development of Management Practices

    Get PDF
    (pdf contains 265 pages

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    Adsorption of the prototypical organic corrosion inhibitor benzotriazole on the Cu(100) surface

    Get PDF
    The interaction of benzotriazole (BTAH) with Cu(100) has been studied as a function of BTAH exposure in a joint experimental and theoretical effort. Scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS), high resolution electron energy loss spectroscopy (HREELS) and density functional theory (DFT) calculations have been combined to elucidate the structural and chemical characteristics of this system. BTAH is found to deprotonate upon adsorption on the copper surface and to adopt an orientation that depends on the molecular coverage. Benzotriazolate (BTA) species initially lie with their planes parallel to the substrate but, at a higher molecular coverage, a transition occurs to an upright adsorption geometry. Upon increasing the BTAH exposure, different phases of vertically aligned BTAs are observed with increasing molecular densities until a final, self-limiting monolayer is developed. Both theory and experiment agree in identifying CuBTA and Cu(BTA)2 metal-organic complexes as the fundamental building blocks of this monolayer. This work shows several similarities with the results of previous studies on the interaction of benzotriazole with other low Miller index copper surfaces, thereby ideally completing and concluding them. The overall emerging picture constitutes an important starting point for understanding the mechanism for protection of copper from corrosion

    Spectral isolation of naturally reductive metrics on simple Lie groups

    Full text link
    We show that within the class of left-invariant naturally reductive metrics MNat⁥(G)\mathcal{M}_{\operatorname{Nat}}(G) on a compact simple Lie group GG, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result demonstrating that any collection of isospectral compact symmetric spaces must be finite, to appear Math Z. (published online Dec. 2009

    Geomagnetically induced current model validation from New Zealand's South Island

    Get PDF
    Geomagnetically induced currents (GICs) during a space weather event have previously caused transformer damage in New Zealand. During the 2015 St. Patrick's Day Storm, Transpower NZ Ltd has reliable GIC measurements at 23 different transformers across New Zealand's South Island. These observed GICs show large variability, spatially and within a substation. We compare these GICs with those calculated from a modeled geolectric field using a network model of the transmission network with industry‐provided line, earthing, and transformer resistances. We calculate the modeled geoelectric field from the spectra of magnetic field variations interpolated from measurements during this storm and ground conductance using a thin‐sheet model. Modeled and observed GIC spectra are similar, and coherence exceeds the 95% confidence threshold, for most valid frequencies at 18 of the 23 transformers. Sensitivity analysis shows that modeled GICs are most sensitive to variation in magnetic field input, followed by the variation in land conductivity. The assumption that transmission lines follow straight lines or getting the network resistances exactly right is less significant. Comparing modeled and measured GIC time series highlights that this modeling approach is useful for reconstructing the timing, duration, and relative magnitude of GIC peaks during sudden commencement and substorms. However, the model significantly underestimates the magnitude of these peaks, even for a transformer with good spectral match. This is because of the limited range of frequencies for which the thin‐sheet model is valid and severely limits the usefulness of this modeling approach for accurate prediction of peak GICs

    An SBVR Framework for RESTful Web Applications

    Get PDF
    We propose a framework that can be used to produce functioning web applications from SBVR models. To achieve this, we begin by discussing the concept of declarative application generation and examining the commonalities between SBVR and the RESTful architectural style of the web. We then show how a relational database schema and RESTful interface can be generated from an SBVR model. In this context, we discuss how SBVR can be used to semantically describe hypermedia on the Web and enhance its evolvability and loose coupling properties. Finally, we show that this system is capable of exhibiting process-like behaviour without requiring explicitly defined processes
    • …
    corecore