542 research outputs found

    Ratchet Effects for Vortices in Superconductors with Periodic Pinning Arrays

    Full text link
    Using numerical simulations we show that novel transport phenomena can occur for vortices moving in periodic pinning arrays when two external perpendicular ac drives are applied. In particular, we find a ratchet effect where the vortices can have a net dc drift even in the absence of a dc drive. This ratchet effect can occur for ac drives which create orbits that break one or more reflection symmetries.Comment: 4 pages, 4 postscript figures; Proceedings of Third European Conference on Vortex Matter in Superconductor

    Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots

    Full text link
    We investigate the effects of finite temperature, dc pulse, and ac drives on the charge transport in metallic arrays using numerical simulations. For finite temperatures there is a finite conduction threshold which decreases linearly with temperature. Additionally we find a quadratic scaling of the current-voltage curves which is independent of temperature for finite thresholds. These results are in excellent agreement with recent experiments on 2D metallic dot arrays. We have also investigated the effects of an ac drive as well as a suddenly applied dc drive. With an ac drive the conduction threshold decreases for fixed frequency and increasing amplitude and saturates for fixed amplitude and increasing frequency. For sudden applied dc drives below threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure

    Slow relaxations and history dependence of the transport properties of layered superconductors

    Full text link
    We study numerically the time evolution of the transport properties of layered superconductors after different preparations. We show that, in accordance with recent experiments in BSCCO performed in the second peak region of the phase diagram (Portier et al, 2001), the relaxation strongly depends on the initial conditions and is extremely slow. We investigate the dependence on the pinning center density and the perturbation applied. We compare the measurements to recent findings in tapped granular matter and we interpret our results with a rather simple picture.Comment: 4 pages, 4 fig

    Internal avalanches in a pile of superconducting vortices

    Full text link
    Using an array of miniature Hall probes, we monitored the spatiotemporal variation of the internal magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. We found that a sizable fraction of the increase in the local vortex population occurs in abrupt jumps. The size distribution of these avalanches presents a power-law collapse on a limited range. In contrast, at low temperatures and low fields, huge avalanches with a typical size occur and the system does not display a well-defined macroscopic critical current.Comment: 5 pages including 5 figure

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.

    Rectification and Flux Reversals for Vortices Interacting with Triangular Traps

    Full text link
    We simulate vortices in superconductors interacting with two-dimensional arrays of triangular traps. We find that, upon application of an ac drive, a net dc flow can occur which shows current reversals with increasing ac drive amplitude for certain vortex densities, in agreement with recent experiments and theoretical predictions. We identify the vortex dynamics responsible for the different rectification regimes. We also predict the occurrence of a novel transverse rectification effect in which a dc flow appears that is transverse to the direction of the applied ac drive.Comment: 4 pages, 4 postscript figure

    Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition

    Full text link
    We examine metastable and transient effects both above and below the first-order decoupling line in a 3D simulation of magnetically interacting pancake vortices. We observe pronounced transient and history effects as well as supercooling and superheating between the 3D coupled, ordered and 2D decoupled, disordered phases. In the disordered supercooled state as a function of DC driving, reordering occurs through the formation of growing moving channels of the ordered phase. No channels form in the superheated region; instead the ordered state is homogeneously destroyed. When a sequence of current pulses is applied we observe memory effects. We find a ramp rate dependence of the V(I) curves on both sides of the decoupling transition. The critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR

    Stability of Monomer-Dimer Piles

    Full text link
    We measure how strong, localized contact adhesion between grains affects the maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer grains, each consisting of two spheres that have been rigidly bonded together, with simple spherical monomer grains, we create sandpiles that contain strong localized adhesion between a given particle and at most one of its neighbors. We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the surface, which reduces the density of monomers that need to be accomodated in the most stable surface traps. A full characterization and geometrical stability analysis of surface traps provides a good quantitative agreement between experiment and theory over a wide range of nu_d, without any fitting parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR

    Plastic Flow, Voltage Bursts, and Vortex Avalanches in Superconductors

    Full text link
    We use large-scale parallel simulations to compute the motion of superconducting magnetic vortices during avalanches triggered by small field increases. We find that experimentally observable voltage bursts correspond to pulsing vortex movement along branched channels or winding chains, and relate vortex flow images to features of statistical distributions. As pin density is increased, a crossover occurs from interstitial motion in narrow easy-flow winding channels with typical avalanche sizes, to pin-to-pin motion in broad channels, characterized by a very broad distribution of sizes. Our results are consistent with recent experiments.Comment: 4 pages, Latex, 4 figures included. Movies available at http://www-personal.engin.umich.edu/~nor

    Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media

    Full text link
    We examine the dynamics of an elastic string interacting with quenched disorder driven perpendicular and parallel to the string. We show that the string is the most disordered at the depinning transition but with increasing drive partial ordering is regained. For low drives the noise power is high and we observe a 1/f^2 noise signature crossing over to a white noise character with low power at higher drives. For the parallel driven moving string there is a finite transverse critical depinning force with the depinning transition occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure
    corecore