15 research outputs found

    Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium.

    Get PDF
    Development Psychopathology in context: famil

    DNA methylation profiles delineate etiologic heterogeneity and clinically important subgroups of bladder cancer

    No full text
    DNA methylation profiles can be used to define molecular cancer subtypes that may better inform disease etiology and clinical decision-making. This investigation aimed to create DNA methylation profiles of bladder cancer based on CpG methylation from almost 800 cancer-related genes and to then examine the relationship of those profiles with exposures related to risk and clinical characteristics. DNA, derived from formalin-fixed paraffin-embedded tumor samples obtained from incident cases involved in a population-based case-control study of bladder cancer in New Hampshire, was used for methylation profiling on the Illumina GoldenGate Methylation Bead Array. Unsupervised clustering of those loci with the greatest change in methylation between tumor and non-diseased tissue was performed to defined molecular subgroups of disease, and univariate tests of association followed by multinomial logistic regression was used to examine the association between these classes, bladder cancer risk factors and clinical phenotypes. Membership in the two most methylated classes was significantly associated with invasive disease (P < 0.001 for both class 3 and 4). Male gender (P = 0.04) and age >70 years (P = 0.05) was associated with membership in one of the most methylated classes. Finally, average water arsenic levels in the highest percentile predicted membership in an intermediately methylated class of tumors (P = 0.02 for both classes). Exposures and demographic associated with increased risk of bladder cancer specifically associate with particular subgroups of tumors defined by DNA methylation profiling and these subgroups may define more aggressive disease

    Review of processing and analysis methods for DNA methylation array data

    Get PDF
    The promise of epigenome-wide association studies and cancer-specific somatic DNA methylation changes in improving our understanding of cancer, coupled with the decreasing cost and increasing coverage of DNA methylation microarrays, has brought about a surge in the use of these technologies. Here, we aim to provide both a review of issues encountered in the processing and analysis of array-based DNA methylation data and a summary of the advantages of recent approaches proposed for handling those issues, focusing on approaches publicly available in open-source environments such as R and Bioconductor. We hope that the processing tools and analysis flowchart described herein will facilitate researchers to effectively use these powerful DNA methylation array-based platforms, thereby advancing our understanding of human health and disease

    Frequent 3p21 allelic loss and methylation-associated RASSF1A inactivation in non-small cell lung cancer and its clinical implication

    No full text
    A total of 110 primary NSCLCs (non-small cell lung cancers) were recruited in this study to characterize the pattern of 3p21 LOH together with the RASSF1A methylation status and their clinical implication. 3p21 LOH by 8 microsatellite markers, RASSF1A methylation status by methylation-specific PCR (MSPCR) as well as bisulfite genomic sequencing (BGS), and RASSF1A expression level by real-time quantitative PCR was performed. 3p21 LOH is frequent in NSCLC with a mean frequency of (41.2±3.7)%. Significant associations between 3p21 LOH and gender, smoking history, histological type, and tumor size were observed. Cases with LOH have a slightly lower RASSF1A expression than cases without LOH but not statistically significant. Comparison of RASSF1A methylation that resulted from the three analyses shows significant correlations from one another. Higher frequency of methylation was observed in larger tumors and in smokers compared with smaller tumors and non-smokers, respectively. A significant correlation was also observed in extent between methylation and RASSF1A expression, illustrating that epigenetic mechanism could affect gene expression. The significant clinicopathological relations of 3p21 LOH may be of great use for both early detection and therapeutic interventions. © 2009 Wuhan University and Springer Berlin Heidelberg.link_to_subscribed_fulltex
    corecore