102 research outputs found
Gemini Observations of Disks and Jets in Young Stellar Objects and in Active Galaxies
We present first results from the Near-infrared Integral Field Spectrograph
(NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A
we observe rotationally-supported accretion disks and adduce the existence of
massive central black holes and estimate their masses. In Cygnus A we also see
remarkable high-excitation ionization cones dominated by photoionization from
the central engine. In the T-Tauri stars HV Tau C and DG Tau we see
highly-collimated bipolar outflows in the [Fe II] 1.644 micron line, surrounded
by a slower molecular bipolar outflow seen in the H_2 lines, in accordance with
the model advocated by Pyo et al. (2002).Comment: Invited paper presented at the 5th Stromlo Symposium. 9 pages, 7
figures. Accepted for publication in Astrophysics & Space Scienc
Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures
We show that spin-polarized electron transmission across
semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on
the degree of spin polarization as well as the strengths of potential and
spin-flip scattering at the interface. We demonstrate that increasing the Fermi
velocity mismatch in the Sm and S regions can lead to enhanced junction
transparency in the presence of spin polarization. We find that the Andreev
reflection amplitude at the superconducting gap energy is a robust measure of
the spin polarization magnitude, being independent of the strengths of
potential and spin-flip scattering and the Fermi velocity of the
superconductor.Comment: 4 pages, 2 figure
The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables
The temperatures of electrons and ions in the post-shock accretion region of
a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass
flow rates or for sufficiently weak magnetic fields. At lower mass flow rates
or in stronger magnetic fields, efficient cyclotron cooling will cool the
electrons faster than the electrons can cool the ions and a two-temperature
flow will result. Here we investigate the differences in polarized radiation
expected from mCV post-shock accretion columns modeled with one- and
two-temperature hydrodynamics. In an mCV model with one accretion region, a
magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along
with a relatively generic geometric orientation of the system, we find that in
the ultraviolet either a single linear polarization pulse per binary orbit or
two pulses per binary orbit can be expected, depending on the accretion column
hydrodynamic structure (one- or two-temperature) modeled. Under conditions
where the physical flow is two-temperature, one pulse per orbit is predicted
from a single accretion region where a one-temperature model predicts two
pulses. The intensity light curves show similar pulse behavior but there is
very little difference between the circular polarization predictions of one-
and two-temperature models. Such discrepancies indicate that it is important to
model some aspect of two-temperature flow in indirect imaging procedures, like
Stokes imaging, especially at the edges of extended accretion regions, were the
specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc
The Symmetry of the Boron Buckyball and a Related Boron Nanotube
We investigate the symmetry of the boron buckyball and a related boron
nanotube. Using large-scale ab-initio calculations up to second-order M{\o}ller
Plesset perturbation theory, we have determined unambiguously the equilibrium
geometry/symmetry of two structurally related boron clusters: the B80 fullerene
and the finite-length (5,0) boron nanotube. The B80 cluster was found to have
the same symmetry, Ih, as the C60 molecule since its 20 additional boron atoms
are located exactly at the centers of the 20 hexagons. Additionally, we also
show that the (5,0) boron nanotube does not suffer from atomic buckling and its
symmetry is D5d instead of C5v as has been described by previous calculations.
Therefore, we predict that all the boron nanotubes rolled from the \alpha
-sheet will be free from structural distortions, which has a significant impact
on their electronic properties.Comment: 4 pages, 3 figure
Low circulating concentrations of very long chain saturated fatty acids are associated with high risk of mortality in kidney transplant recipients
Kidney transplant recipients (KTR) are at increased risk of mortality, particularly from infectious diseases, due to lifelong immunosuppression. Although very long chain saturated fatty acids (VLSFA) have been identified as crucial for phagocytosis and clearance of infections, their association with mortality in immunocompromised patient groups has not been studied. In this prospective cohort study we included 680 outpatient KTR with a functional graft ≥1 year and 193 healthy controls. Plasma VLSFA (arachidonic acid (C20:0), behenic acid (C22:0) and lignoceric acid (C24:0)) were measured by gas chromatography coupled with a flame ionization detector. Cox regression analyses was used to prospectively study the associations of VLSFA with all-cause and cause-specific mortality. All studied VLSFA were significantly lower in KTR compared to healthy controls (all p < 0.001). During a median (interquartile range) follow-up of 5.6 (5.2–6.3) years, 146 (21%) KTR died, of which 41 (28%) died due to infectious diseases. In KTR, C22:0 was inversely associated with risk of all-cause mortality, with a HR (95% CI) per 1-SD-increment of 0.79 (0.64–0.99), independent of adjustment for potential confounders. All studied VLSFA were particularly strongly associated with mortality from infectious causes, with respective HRs for C20:0, C22:0 and C24:0 of 0.53 (0.35–0.82), 0.48 (0.30–0.75), and 0.51 (0.33–0.80), independent of potential confounders. VLSFA are inversely associated with infectious disease mortality in KTR after adjustment, including HDL-cholesterol. Further studies are needed to assess the effect of VLSFA-containing foods on the risk of infectious diseases in immunocompromised patient groups
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
NuSTAR unveils a Compton-thick type 2 quasar in MrK 34
We present Nuclear Spectroscopic Telescope Array (NuSTAR) 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM-Newton data can be fitted self-consistently with a reflection-dominated continuum and a strong Fe K? fluorescence line with equivalent width >1 keV. Prior X-ray spectral fitting below 10 keV showed the source to be consistent with being obscured by Compton-thin column densities of gas along the line of sight, despite evidence for much higher columns from multiwavelength data. NuSTAR now enables a direct measurement of this column and shows that N H lies in the Compton-thick (CT) regime. The new data also show a high intrinsic 2-10 keV luminosity of L 2-10 ~ 1044 erg s–1, in contrast to previous low-energy X-ray measurements where L 2-10 lesssim 1043 erg s–1 (i.e., X-ray selection below 10 keV does not pick up this source as an intrinsically luminous obscured quasar). Both the obscuring column and the intrinsic power are about an order of magnitude (or more) larger than inferred from pre-NuSTAR X-ray spectral fitting. Mrk 34 is thus a "gold standard" CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC 6240, which is currently undergoing a major merger coupled with strong star formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk 34 is high enough to potentially power the total infrared luminosity. X-ray spectral fitting also shows that thermal emission related to star formation is unlikely to drive the observed bright soft component below ~3 keV, favoring photoionization instead
- …