3 research outputs found

    Learn-and-Optimize: a Parameter Tuning Framework for Evolutionary AI Planning

    No full text
    Abstract. Learn-and-Optimize (LaO) is a generic surrogate based method for parameter tuning combining learning and optimization. In this paper LaO is used to tune Divide-and-Evolve (DaE), an Evolutionary Algorithm for AI Planning. The LaO framework makes it possible to learn the relation between some features describing a given instance and the optimal parameters for this instance, thus it enables to extrapolate this relation to unknown instances in the same domain. Moreover, the learned knowledge is used as a surrogate-model to accelerate the search for the optimal parameters. The proposed implementation of LaO uses an Artificial Neural Network for learning the mapping between features and optimal parameters, and the Covariance Matrix Adaptation Evolution Strategy for optimization. Results demonstrate that LaO is capable of improving the quality of the DaE results even with only a few iterations. The main limitation of the DaE case-study is the limited amount of meaningful features that are available to describe the instances. However, the learned model reaches almost the same performance on the test instances, which means that it is capable of generalization.

    On the Benefit of SubOptimality within the Divide-and-Evolve Scheme

    Get PDF
    Abstract. Divide-and-Evolve (DaE) is an original “memeticization ” of Evolutionary Computation and Artificial Intelligence Planning. DaE optimizes either the number of actions, or the total cost of actions, or the total makespan, by generating ordered sequences of intermediate goals via artificial evolution. The evolutionary part of DaE is based on the Evolving Objects (EO) library, and can theorically use any embedded planner. However, since the introduction of this approach only one embedded planner has been used: the temporal optimal planner CPT. In this paper, we built a new version of DaE based on time-based Atom Choice and we embarked another planner (the sub-optimal planner YAHSP) in order to test the technical robustness of the approach and to compare the impact of using an optimal planner versus using a sub-optimal planner for all kinds of planning problems.

    Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo

    No full text
    Background: Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagonlike peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated. Methods: ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallelgroup, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy. Results: Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m2, and duration of T2DM was 9.3±8.2 years. The qualifying ACS wasamyocardial infarctionin83% and unstableangina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events. Conclusion: ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk. © 2015 Elsevier Inc. All rights reserved
    corecore