
HAL Id: inria-00443984
https://hal.inria.fr/inria-00443984

Submitted on 5 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Benefit of Sub-Optimality within the
Divide-and-Evolve Scheme

Jacques Bibai, Pierre Savéant, Marc Schoenauer, Vidal Vincent

To cite this version:
Jacques Bibai, Pierre Savéant, Marc Schoenauer, Vidal Vincent. On the Benefit of Sub-Optimality
within the Divide-and-Evolve Scheme. 10th European Conference on Evolutionary Computation in
Combinatorial Optimisation (EvoCOP 2010), Apr 2010, Istanbul, Turkey. pp.23-34, �10.1007/978-3-
642-12139-5_3�. �inria-00443984�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50120963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00443984
https://hal.archives-ouvertes.fr

On the Benefit of Sub-Optimality within the

Divide-and-Evolve Scheme

Jacques BIBAI12, Pierre SAVÉANT2,
Marc SCHOENAUER1, and Vincent VIDAL3

1 Projet TAO, INRIA Saclay & LRI, Université Paris Sud, Orsay, France.
firstname.lastname@inria.fr

2 Thales Research & Technology, Palaiseau, France.
firstname.lastname@thalesgroup.com
3 ONERA – DCSD, Toulouse, France

Vincent.Vidal@onera.fr

Abstract. Divide-and-Evolve (DaE) is an original “memeticization” of
Evolutionary Computation and Artificial Intelligence Planning. DaE op-
timizes either the number of actions, or the total cost of actions, or the to-
tal makespan, by generating ordered sequences of intermediate goals via
artificial evolution. The evolutionary part of DaE is based on the Evolv-
ing Objects (EO) library, and can theorically use any embedded planner.
However, since the introduction of this approach only one embedded
planner has been used: the temporal optimal planner CPT. In this pa-
per, we built a new version of DaE based on time-based Atom Choice
and we embarked another planner (the sub-optimal planner YAHSP) in
order to test the technical robustness of the approach and to compare the
impact of using an optimal planner versus using a sub-optimal planner
for all kinds of planning problems.

1 Introduction

An Artificial Intelligence (AI) planning problem is specified by the description
of an initial state, a goal state, and a set of possible actions. An action modifies
the current state, and can be applied only if certain conditions in the current
state are met. A solution to a planning problem is an ordered set of actions,
whose execution from the initial state transforms it into a state that includes
the goal state. The quality criterion of a plan depends on the type of available
actions: number of actions in the simplest case; total cost for actions with cost;
total makespan for durative actions which, in addition, may temporally overlap.

Domain independent planning is a fundamental and dynamic field of AI that
has been tackled with a large amount of methods and algorithms, among which
heuristic search (LAMA [15], FF [11], Fast Downward [10], YAHSP [19]),
local search (LPG [7, 8]), and constraint programming (CPT [20, 21]). Among all
these directions of planning research, and following some considerable successes
of evolutionary algorithms in other areas of AI, Genetic Planning was introduced
with the purpose to translate those success to planning problems. Introduced in

[12], several approaches to Genetic Planning have been proposed [18, 14, 22, 23,
4]. However, due to the limited performance of the resulting planning systems,
the relevance of the possibility of application of EAs to planning was not deemed
significant in comparison to the traditional methods.

However, an original approach, termed Divide-and-Evolve (DaE), was re-
cently proposed [16, 17] to hybridize Evolutionary Algorithms (EAs) with Ar-
tificial Intelligence Planning. The baseline of DaE is to generate a sequence of
partial states, thus dividing the initial problem into a sequence of subproblems,
calling an external traditional planner to solve each subproblem in turn, and
building a global solution from all subproblem solutions. DaE has participated
to the last International Planning Competition (IPC) [2]: whereas hindered by
the tight time limit, the quality of the solution plans it obtained on all the in-
stances that it could solve in the temporal track was generally better than that of
its competitors. Moreover, [1] demonstrates that those results can be improved
for instance by a careful choice of the atoms that are used to build the partial
states.

Until today, although DaE can theorically use any embedded planner, all
experiments based on DaE have been performed using the optimal planner CPT

as the embedded planner. The goal of this paper is to compare the performances
of the DaE approach when using either CPT or a sub-optimal planner, such as
YAHSP. The robustness of the hybrid algorithms and the quality of the solution
plans they can find will be experimentally compared on all kinds of AI planning
problems. Furthermore, the new version of DaE that will be used here builds
on the time-based Atom Choice introduced in [1].

The paper is organized as follows: Section 2 briefly introduces planning prob-
lems; Section 3 recalls the Divide-and-Evolve approach, representation, fitness
function and variation operators; Section 4 presents the results. The last section
discusses results of DaE using either CPT or YAHSP as embedded planner,
and sketches some directions for future work.

2 Planning Problems

Domain-independent planners rely on the Planning Domain Definition Language
(PDDL) [13], inherited from the STRIPS model [5], to standardise and represent
a planning problem. The language has been extended for representing temporal-
ity and action concurrency in PDDL2.1 [6].

The description of a planning problem splits into two separate parts: the
generic domain theory on one hand and a specific instance scenario on the other
hand. The domain definition specifies object types, predicates and actions which
capture the possible state changes, whereas the instance scenario declares the
objects of interest, the initial state and the goal description. A state is described
by a set of atomic formulae, or atoms. An atom is defined by a predicate symbol
from the domain followed by a list of object identifiers: (PREDICATE NAME
OBJ1 ... OBJN). The initial state is complete, i.e. it gives a unique status of
the world, whereas the goal might be a partial state, i.e., it can be true in many

different (complete) states. An action is composed of a set of preconditions and
a set of effects, and applies to a list of variables given as arguments, and possibly
a duration or a cost. Preconditions are logical constraints which apply domain
predicates to the arguments and trigger the effects when they are satisfied. Ef-
fects enable state transitions by adding or removing atoms.

A solution to a planning problem is a consistent schedule of grounded actions
whose execution in the initial state leads to a state that contains one goal state,
i.e., where all atoms of the problem goal are true.

A planning problem defined on domain D with initial state I and goal G will
be denoted PD(I,G) in the following.

3 Divide-and-Evolve

In order to solve a planning problem PD(I,G), the basic idea of DaE is to find
a sequence of states S1, . . . , Sn, and to use some embedded planner to solve the
series of planning problems PD(Sk, Sk+1), for k ∈ [0, n] (with the convention
that S0 = I and Sn+1 = G). The generation and optimization of the sequence
of states (Si) is driven by an evolutionary algorithm, and we will now describe
its main components: the problem-specific representation of individuals, fitness,
and variation operators.

3.1 Representation

As described in Section 2, a state is a list of atoms built over the set of predicates
and the set of object instances. However, searching the space of complete states
would result in a rapid explosion of the size of the search space. Moreover, goals
of planning problem need only to be defined as partial states. It thus seems more
practical to search only sequences of partial states, and to limit the choice of
possible atoms used within such partial states. However, this raises the issue of
the choice of the atoms to be used to represent individuals, among all possible
atoms.

The result of the previous experiments on different domains of temporal
planning problems from the IPC benchmark series [1] demonstrates the need for
a very careful choice of the atoms that are used to build the partial states. This
lead to propose a new method to build the partial states, based on the earliest
time from which an atom can become true. Such time can be estimated by any
admissible heuristic function (e.g h1, h2... [9]). The start times are then used
in order to restrict the candidate atoms for each partial state. A partial state
is then built at each time by randomly choosing among several atoms that are
possibly true at this time. The sequence of states is then built by preserving the
estimated chronology between atoms (time consistency). Heuristic function
h1 has been used for all experiments presented here.

Nevertheless, even when restricted to specific choices of atoms, the random
sampling can lead to inconsistent partial states, because some sets of atoms can

be mutually exclusive4 (mutex in short). Whereas it could be possible to allow
mutex atoms in the partial states generated by DaE, and to let evolution discard
them, it seems more efficient to a priori forbid them, as much as possible. In
practice, it is difficult to decide if several atoms are mutex. Nevertheless, binary
mutexes can be approximated (i.e. not all pairs of mutually exclusive atoms can
be discovered) with a variation of the h2 heuristic function [9] in order to build
quasi pairwise-mutex-free states (i.e., states where no pair of atoms are mutex).

An individual in the new version of DaE is hence represented as a variable
length ordered time consistency list of partial states, and each state is a variable
length list of atoms that are not pairwise mutex.

3.2 Fitness, and Embedded Planners

The fitness of a list of partial states S1, . . . , Sn is computed by repeatedly calling
an external ’embedded’ planner to solve the sequence of problems PD(Sk, Sk+1),
{k = 0, . . . , n}. Any existing planner could be used, and up to now, only CPT has
been used within the DaE approach. CPT [20, 21] is an exact planning system
which combines a branching scheme based on Partial Order Causal Link (POCL)
Planning with powerful and sound pruning rules implemented as constraints.
But is optimality mandatory in order for DaE to obtain good quality results? In
order to address this issue, a sub-optimal planner, YAHSP will be used here too.
YAHSP [19] is a lookahead strategy planning system for sub-optimal STRIPS
planning which uses the actions in the relaxed plan to compute reachable states
in order to speed up the search process.

For any given k, if the chosen embedded planner succeeds in solving PD(Sk,
Sk+1), the final complete state is computed by executing the solution plan
from Sk, and becomes the initial state of the next problem. If all problems,
PD(Sk, Sk+1) are solved by the chosen embedded planner, the individual is called
feasible, and the concatenation of all solution plans for all PD(Sk, Sk+1) is a
global solution plan for PD(S0 = I, Sn+1 = G). However, this plan can in gen-
eral be optimised by rescheduling some of its actions, in a step called compression
(see [17] for detailed discussion). The quality of the compressed plan defines the
fitness of a feasible individual.

However, as soon as the chosen embedded planner fails to solve one PD(Sk,
Sk+1) problem, the following problem PD(Sk+1, Sk+2) cannot be even tackled
by the chosen embedded planner, as its initial state is in fact partially unknown,
and no quality can be given to that individual. All such plans receive a penalty
proportional to the number of subproblems solved such that the fitness of any
infeasible individual is higher than that of any feasible individual.

Finally, because the initial population contains randomly generated indi-
viduals, some of them might contain some subproblems that are in fact more
difficult than the original global problems. It was necessary to limit the chosen
local planner by adding some constraints in order to discard those subproblems.

4 Several atoms are mutually exclusive when there exists no plan that, when applied
to the initial state, yields a state containing them all.

And because, ultimately, it is hoped that all subproblems will be easy to solve,
such limitation should not harm the search for solutions.

We have constrained CPT (resp. YAHSP) with a maximal number of

backtracks (resp. a maximal number of nodes) that it is allowed to use
to solve any of the subproblems. We have determined those bounds by a two-
steps process: first, while evaluating the initial population, we allow a very large
number of backtracks (resp. nodes) (e.g. 100000); the bounds are then chosen
as the median of the actual number of backtracks (resp. nodes) that have been
used to find the solutions during these evaluations of the initial population.

3.3 Initialization and Variation Operators

The initialization phase and the variation operators of the DaE algorithm respec-
tively build the initial sequences of states and randomly modify some sequences
during its evolutionary run.

The initialization of an individual is the following: first, the number of
states is uniformly drawn between 1 and the number of estimated start times (see
Section 3.1); For every chosen time, the number of atoms per state is uniformly
chosen between 1 and the number of atoms of the corresponding restriction.
Atoms are then chosen one by one, uniformly in the allowed set of atoms, and
added to the individual if not mutex with any other atom already there.

A 1-point crossover is used, adapted to variable-length representation in
that both crossover points are independently chosen, uniformly in both parents.

Four different mutation operators have been designed, and once an individual
has been chosen for mutation (according to a population-level mutation rate),
the choice of which mutation to apply is made according to user-defined relative
weights (see Section 3.4).

Because an individual is a variable length list of states, and a state is a
variable length list of atoms, the mutation operator can act here at two levels:
at the individual level by adding (addState) or removing (delState) a state; or
at the state level by adding (addAtom) or removing (delAtom) some atoms
in the given state.

Note that the initialization process and these variation operators maintain
the chronology between atoms in a sequence of states and the local consistency
of a state, i.e. avoiding pairwise mutexes

3.4 Evolution Engine and Parameter Settings

A general issue in Evolutionary Computation (EC) lies in the number of param-
eters the programmer has to tune (from population size to selection operators
to rates of applications of variation operators), and the lack of theoretical guid-
ance to help him. Experimental statistical procedures have been proposed (e.g
[24],[25]), that build on standard Design of Experiments methods and use the
specificities of the EC domain to reduce the amount of computations.

In order to tune DaE, [3] proposed a two steps learning approach which
involves choosing the probability and weights of each of the variation operators

being used with racing [24], and then choosing which predicates will be used to
describe the intermediate goals with statistical analysis. In this paper we use
the first step of [3] approach in several domains of IPC benchmarks and chose
to keep the best common parameters configuration for all experiments of this
paper.

The evolution engine, chosen to be a (10+70)-ES: 10 parents generate 70
offspring using variation operators, and the best of those 80 individuals become
the parents of the next generation. The same stopping criterion has also been
used for all experiments: after a minimum number of 10 generations, evolution is
stopped if no improvement of the best fitness in the population is made during 50
generations, with a maximum of 1000 generations altogether. The probabilities of
individual-level application of crossover and mutation (pcross and pmut) are (0.2,
0.8) and the relative weights of the 4 mutation operators (waddState, wdelState,
waddAtom, wdelAtom) are (3,1,1,1).

4 Experimental Results

Divide-and-Evolve has been implemented within the Evolving Objects frame-
work5, an open source, template-based, ANSI C++-STL-compliant evolutionary
computation library. In order to illustrate the behavior of DaE with each embed-
ded planner, and to compare those implementations of DaE in all kind of plan-
ning problem, the following IPC benchmark domains have been used: airport,
satellite and logistics domains for simple planning problem, openstacks,
scanalyser and woodworking domains of the sixth IPC sequential satisficing
track for planning with actions with costs, and crewplanning, elevator and
satellite time windows compiled domains for temporal planning problem
(actions with duration). Each domain has several instances of increasing com-
plexity, hence a total of 470 problems.

Performance Measures:

All algorithms are given at most 2 hours of CPU time for each run on each
problem instance. Their efficiency is then measured by the number of instances
solved on each domain.

The quality of the plans are evaluated using IPC rules. For a given instance
i, let Q∗

i be the best plan quality found among the competitor planners. The
quality ratio for each planner is defined by Q∗

i /Qi. The quality score of a
planner for domain D is the sum over all instances of D of the quality ratios
of this planner. The planner with the highest quality score is designated as the
best performer on the domain. Note that if a planner cannot find a plan for a
given instance after 2 hours, its quality ratio is set to 0 for this instance.

However, because DaEYAHSP and DaECPT are stochastic algorithms, 11 runs
are performed on each instance in order to assess their robustness. Their effi-

ciency per domain is defined as the total number of instances that have been

5 http://eodev.sourceforge.net/

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
20

00
40

00
60

00

Running time Crewplanning−Time

instances

ru
nn

ing
 tim

e
(s

)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
20

00
40

00
60

00
Black: DAE+YAHSP
Blue: DAE+CPT

Fig. 1. Standard boxplots for the runtime distributions of DaECPT (blue, on top) and
DaEYAHSP (black, at bottom) on crewplanning-Time domain. The total runtime was
bounded by 2 hours, hence the upper-limit of almost all boxplots for CPT.

solved at least once. The average efficiency for a given domain D is defined as
P

i;ni>0
ni

P

i;ni>0
1

, where ni is the number of successful runs (i.e., that found a plan) for

instance i of D. It lies in [0, 11]. The average quality for domain D is defined

as the sum over all solved instances i of D of 1

ni

∑
{j solved i}

Q∗

i

qj
where qj is the

quality of the plan found by run j – the closer from the efficiency, the better.

Results:

First column (resp. second colum) of Table 1 shows for all algorithms the best
efficiency Splanner (resp. quality Qplanner) together with, in parentheses, the
average efficiency (resp. average quality) for both DaE variants. Last column
is the ratio Qplanner/Splanner. The mean values of those figures accross test
domains are also provided, by domain category, and over all domains.

Figure 3 shows, for all algorithms, the plan quality of all instances accross
3 different domains (one of each category). Each column corresponds to an in-
stance (number on the X axis). For the original planners YAHSP and CPT,
symbols (’@’ and ’#’ respectively) indicate the plan quality found. For both
DAE variants, standard boxplots sketch the distribution of the qualities of the
11 plans. Figure 1 displays, for both DAE variants, the standard boxplots for
the distribution of the 11 running times, and 2 shows one typical example of the
fitness behavior along evolution on elevator-Time problem 2.

Discussion:

First, DaEYAHSP solves significantly more problems (79.36% of all problems)
than YAHSP alone (71.49% of all problems), and much more than DaECPT

(21.70%) and CPT alone (10% only). Then, DaEYAHSP has the best quality
score (see last line of Table 1) for all kinds of planning problem. Furthermore,
DaEYAHSP consistently finds (see Table 1) either the optimal value, or a value

@@@

@@@@@@@@@@@@@@@

@@@@
@@

@

@@@@

@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@

@@
@@

70
75

80
85

90
95

10
0

10
5

11
0

11
5

12
0

12
5

Fitness behavior: elevator−time instance 2

evaluations

fitn
es

s

###

#######

##

#
###

@: DAE+YAHSP

#: DAE+CPT

Fig. 2. Fitness behavior of DaECPT (#) and DaEYAHSP (@) on the easy elevator-Time

problem number 2.

more than 94% of the optimal value (as found by CPT) (Figure 3), and always
finds a better plan quality than YAHSP alone (Figure 3 and Table 1). The
running times of DaEYAHSP, for instance on the crewplanning domain (Figure
1), are always smaller than those of DaECPT (in fact, 2 hours was not enough
for DaECPT). Thus, the variance of plan quality of DaEYAHSP (Figure 3) is
generally smaller than that of DaECPT.

However, although the DaEYAHSP planner has the best sub-optimal ratio over
all tested domains (last line of Table 1), DaECPT has the best ratio on temporal
domains (line 13 of Table 1). This is due to the quality of the compression
step with the CPT constraint representation, where causal links and partial
orders are inferred and exploited – which is not the case when YAHSP solved
the subproblems. Nevertheless, there is no absolute best method here: Even in
the case where one DaE variant obtains the best ratio value on a given type of
problems, there is always at least one domain of this type where the other variant
performs better on all instances it could solve (see table 1). See for instance,
the crewplanning domain for temporal planning problems, and airport and
woodworking domains for the other types of planning problem.

In all tested domains, DaECPT (respectively DaEYAHSP) could solve more
problems than CPT (respectively YAHSP) alone. Furthermore, the average effi-
ciency of both variants is very high (close to the maximum value 11), DaEYAHSP

being slighly more robust than DaECPT: when an instance is solvable, almost
all runs succeed. Regarding the quality robustness, the average quality of both
variants are more often more than 90% of the quality score.

5 Conclusion

Divide-and-Evolve is an original “memeticization” of Evolutionary Computation
and AI Planning. However, since the introduction of this approach, only one

embedded planner (the optimal CPT [20, 21]) had been used within DaE. The
results presented in this paper, relying on the implementation of the time-based
Atom Choice introduced in [1], demonstrate that

– it is indeed possible to embed in DaE another planner (here, the sub-optimal
YAHSP [19]);

– when using the suboptimal YAHSP DaE can greatly improve the plan
quality over that reached by YAHSP alone in all kind of planning problems;

– when embedding YAHSP, DaE is able to solve more problems within a 2
hours limit than when using the optimal planner CPT;

– the quality of the plans found by the DaEYAHSP version is very high, higher
than that of DaECPT in simple and cost domains, and almost as good even
in the case of temporal domains, where the compression step is much more
efficient with the constraint-based CPT solver.

But there is still room for large improvements for DaE. First, it should be
possible to define constraints in order to discard subproblems that are more
difficult than the original global problem. This open issue could be addressed
using for instance the empirical formulae of [1] that were designed to reduce the
running time of DaECPT on temporal planning problems. Second, building on
those results, it should be possible to combine several planners, taking advantage
of the specificities of each of them by letting the Evolutionary Algorithm choose,
for each subproblem, which planner to use. Such directions will be the subject
of further research.

References

1. J. Bibai, P. Savéant, and M. Schoenauer. Divide-And-Evolve Facing State-of-
the-Art Temporal Planners during the 6th International Planning Competition.
In C. Cotta and P. Cowling, editors, EvoCOP’09, pages 133–144. LNCS 5482,
Springer-Verlag, 2009.

2. J. Bibai, P. Savéant, M. Schoenauer, and V. Vidal. DAE : Planning as Artifi-
cial Evolution (Deterministic part). At International Planning Competition (IPC)
http://ipc.icaps-conference.org/, 2008.

3. J. Bibai, P. Savéant, M. Schoenauer, and V. Vidal. Learning Divide-and-Evolve
Parameter Configurations with Racing. In A. Coles et al., editors, ICAPS 2009,
Workshop on Planning and Learning, AAAI Press, 2009.

4. A. H. Brié and P. Morignot. Genetic Planning Using Variable Length Chromo-
somes. In Proc. ICAPS, 2005.

5. R. Fikes and N. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, 1:27–120, 1971.

6. M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. JAIR, 20:61–124, 2003.

7. A. Gerevini, A. Saetti, and I. Serina. On Managing Temporal Information for Han-
dling Durative Actions in LPG. In AI*IA 2003: Advances in Artificial Intelligence.
Springer Verlag, 2003.

8. A. Gerevini, A. Saetti, and I. Serina. Planning through Stochastic Local Search
and Temporal Action Graphs in LPG. JAIR, 20:239–290, 2003.

9. P. Haslum and H. Geffner. Admissible Heuristics for Optimal Planning. In Proc.
AIPS-2000, pages 70–82, 2000.

10. M. Helmert. The Fast Downward Planning System. JAIR, 26(1):191–246, 2006.
11. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation

Through Heuristic Search. JAIR, 14:253–302, 2001.
12. J. R. Koza. Genetic Programming: on the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
13. D. McDermott. PDDL – The Planning Domain Definition language. At

http://ftp.cs.yale.edu/pub/mcdermott, 1998.
14. I. Muslea. SINERGY: A Linear Planner Based on Genetic Programming. In

ECP ’97: Proceedings of the 4th European Conference on Planning, pages 312–324,
London, UK, 1997. Springer-Verlag.

15. S. Richter, M. Helmert, and M. Westphal. Landmarks Revisited. In Proc. AAAI’08,
pages 975–982. AAAI Press, 2008.

16. M. Schoenauer, P. Savéant, and V. Vidal. Divide-and-Evolve: a New Memetic
Scheme for Domain-Independent Temporal Planning. In J. Gottlieb and G. Raidl,
editors, Proc. EvoCOP’06. Springer Verlag, 2006.

17. M. Schoenauer, P. Savéant, and V. Vidal. Divide-and-Evolve: a Sequential Hy-
bridization Strategy using Evolutionary Algorithms. In Z. Michalewicz and
P. Siarry, editors, Advances in Metaheuristics for Hard Optimization, pages 179–
198. Springer, 2007.

18. L. Spector. Genetic Programming and AI Planning Systems. In Proc. AAAI 94,
pages 1329–1334. AAAI/MIT Press, 1994.

19. V. Vidal. A Lookahead Strategy for Heuristic Search Planning. In 14th Interna-
tional Conference on Automated Planning & Scheduling - ICAPS, pages 150–160,
2004.

20. V. Vidal and H. Geffner. Branching and Pruning: An Optimal Temporal POCL
Planner based on Constraint Programming. In Proc. AAAI, pages 570–577, 2004.

21. V. Vidal and H. Geffner. Branching and Pruning: An Optimal Temporal POCL
Planner based on Constraint Programming. Artificial Intelligence, 170(3):298–335,
2006.

22. C. H. Westerberg and J. Levine. “GenPlan”: Combining Genetic Programming
and Planning. In M. Garagnani, editor, 19th Workshop PLANSIG 2000), The
Open University, 2000.

23. C. H. Westerberg and J. Levine. Investigations of Different Seeding Strategies in
a Genetic Planner. In E. J. W. Boers et al., editors, Applications of Evolutionary
Computing, pages 505–514, LNCS 2037, Springer-Verlag, 2001.

24. B. Yuan and M. Gallagher. Statistical Racing Techniques for Improved Empirical
Evaluation of Evolutionary Algorithms. In Proc. PPSN VIII, LNCS 3242, pages
172–181. Springer Verlag, 2004.

25. B. Yuan and M. Gallagher. Combining Meta-EAs and Racing for Difficult EA
Parameter Tuning Tasks. In Parameter Setting in Evolutionary Algorithms, pages
121–142. Springer-Verlag, 2007.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Airport−STRIPS: DAE+YAHSP

instances

n
u

m
b

e
r

o
f
a

c
ti
o

n
s

@ @
@ @ @

@ @
@ @

@ @
@ @

@ @
@

@
@

@
@

@

@
@ @

@ @
@

@
@ @

@

@ @

@

@

@ @

@ @
@

@ @

@
@

@

#

@ YAHSP

CPT

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Airport−STRIPS: DAE+CPT

instances

n
u

m
b

e
r

o
f
a

c
ti
o

n
s

@ @
@ @ @

@ @
@ @

@ @
@ @

@ @
@

@
@

@
@

@

@
@ @

@ @
@

@
@ @

@

@ @

@

@

@ @

@ @
@

@ @

@
@

@

#

@ YAHSP

CPT

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
2

0
4

0
6

0
8

0
1

0
0

Openstacks−Costs:DAE+YAHSP

instances

to
ta

l−
c
o

s
t

@
@

@

@
@

@ @ @
@ @

@

@

@ @

@

@
@

@

@ @

@

@

@ @

@
@

@

@ @

@

#

@ YAHSP

CPT

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
2

0
4

0
6

0
8

0
1

0
0

Openstacks−Costs: DAE+CPT

instances

to
ta

l−
c
o

s
t

@
@

@

@
@

@ @ @
@ @

@

@

@ @

@

@
@

@

@ @

@

@

@ @

@
@

@

@ @

@

#

@ YAHSP

CPT

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Crewplanning−Time: DAE+YAHSP

instances

m
a

k
e

s
p

a
n

@ @ @ @ @ @
@

@
@

@
@

@

@ @ @

@
@

@
@

@
@

@ @ @

@
@

@

@

@
@

#

#

#

@ YAHSP

CPT

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Crewplanning−Time: DAE+CPT

instances

m
a

k
e

s
p

a
n

@ @ @ @ @ @
@

@
@

@
@

@

@ @ @

@
@

@
@

@
@

@ @ @

@
@

@

@

@
@

#

#

#

@ YAHSP

CPT

Fig. 3. Best plan quality found by CPT (#), YAHSP value (@) and the corresponding
DaE variant (for each instance, one standard boxplot sketches the distribution of the
11 runs) on aiport-STRIPS, openstacks-Costs and crewplanning-Time domains. The
boxplots follow standard usage: the central box is the 25% – 75% quartile with median
bar, the end of the upper (lower) dashed lines indicate the highest (lowest) values that
are not considered as outliers, while the circles outside these lines are outliers.

Table 1. Quality and scaling of the optimal planner CPT, sub-optimal planners YAHSP, DaECPT and DaEYAHSP accross the test
domains. In column Domain(x), x denotes the total number of problem instances. Column 2-5 display the efficiency, i.e. number of
instances solved (and also, for the DaE variants, the average number of successful runs – the closest to 11 the better). Column 7-10 show
the quality score (and in parentheses, for DaE variants, the average efficiency, the closest to the quality score the better). See text for
the exact definitions. The values in bold are the best values obtained on each type of planning problem (STRIPS, Cost, and Temporal).
Column 11-15 displays the ratios Quality Score

Efficiency
on each domain (with means of those ratios accross the domain types). The underlined

values in those columns are the best values obtained on each domain by the sub-optimal planners YAHSP, DaECPT and DaEYAHSP.

Domain
Efficiency Quality Quality/ Total of solved problems

yahsp cpt DaEYAHSP DaECPT yahsp cpt DaEYAHSP DaECPT yahsp cpt DaEYAHSP DaECPT

Airport-STRIPS(50) 46 7 43 / 8.2 22 / 7.2 44.34 7 42.62 (42.1) 22 (22) 96.39% 100% 99.13% 100%
Satellite-STRIPS(36) 24 2 31 / 10.4 4 / 11 14.08 2 31 (30.8) 3.80 (3) 58.69% 100% 100% 95.24%
Logistics-STRIPS(198) 125 9 142 / 9.3 11 / 9.9 92.07 9 141.94 (133.5) 10.93 (10.9) 73.66% 100% 99.96% 99.45%
Total problems (284) 195 18 216 37 150.50 18 215.56 36.74 76.25% 100% 99.70% 98.23%

Openstacks-Cost(30) 30 3 30 / 10.9 6 / 6.8 11.60 3 30 (27.2) 5 (4.1) 38.70% 100% 100% 83.33%
Scanalyser-Cost(30) 27 3 28 / 10.5 6 / 7.7 16.48 3 27.81 (26) 5.92 (5.8) 61.04% 100% 99.35% 98.81%
Woodworking-Cost(30) 23 1 23 / 10.4 5 / 9 20.10 1 22.98 (22.3) 5 (3) 87.42% 100% 99.95% 100%
Total problems (90) 80 7 81 17 48.19 7 80.80 15.92 62.39% 100% 99.77% 94.05%

Crewplanning-Time(30) 30 14 30 / 10.9 30 / 9.5 24.65 14 29.97 (29.5) 29.01 (27.4) 82.19% 100% 99.93% 96.73%
Elevator-Time(30) 21 1 30 / 10.8 4 / 7 11.55 1 28.99 (23.6) 3.86 (3.6) 55.03% 100% 96.64% 96.74%
Satellite-Time(36) 10 7 16 / 9.2 14 / 8.1 7.47 7 15.15 (14.5) 14 (13.7) 74.78% 100% 94.72% 100%
Total problems (96) 61 22 76 48 43.69 22 74.12 46.88 70.67% 100% 97.10% 97.82%

Total (470) 336 47 373 102 242.39 47 370.49 99.56 69.77% 100% 98.85% 96.70%

