66 research outputs found

    The protein kinase LKB1 promotes self-renewal and blocks invasiveness in glioblastoma

    Get PDF
    The role of liver kinase B1 (LKB1) in glioblastoma (GBM) development remains poorly understood. LKB1 may regulate GBM cell metabolism and has been suggested to promote glioma invasiveness. After analyzing LKB1 expression in GBM patient mRNA databases and in tumor tissue via multiparametric immunohistochemistry, we observed that LKB1 was localized and enriched in GBM tumor cells that co-expressed SOX2 and NESTIN stemness markers. Thus, LKB1-specific immunohistochemistry can potentially reveal subpopulations of stem-like cells, advancing GBM patient molecular pathology. We further analyzed the functions of LKB1 in patient-derived GBM cultures under defined serum-free conditions. Silencing of endogenous LKB1 impaired 3D-gliomasphere frequency and promoted GBM cell invasion in vitro and in the zebrafish collagenous tail after extravasation of circulating GBM cells. Moreover, loss of LKB1 function revealed mitochondrial dysfunction resulting in decreased ATP levels. Treatment with the clinically used drug metformin impaired 3D-gliomasphere formation and enhanced cytotoxicity induced by temozolomide, the primary chemotherapeutic drug against GBM. The IC50 of temozolomide in the GBM cultures was significantly decreased in the presence of metformin. This combinatorial effect was further enhanced after LKB1 silencing, which at least partially, was due to increased apoptosis. The expression of genes involved in the maintenance of tumor stemness, such as growth factors and their receptors, including members of the platelet-derived growth factor (PDGF) family, was suppressed after LKB1 silencing. The defect in gliomasphere growth caused by LKB1 silencing was bypassed after supplementing the cells with exogenous PFDGF-BB. Our data support the parallel roles of LKB1 in maintaining mitochondrial homeostasis, 3D-gliomasphere survival, and hindering migration in GBM. Thus, the natural loss of, or pharmacological interference with LKB1 function, may be associated with benefits in patient survival but could result in tumor spread.Cancer Signaling networks and Molecular Therapeutic

    Quantificação de fatores de crescimento na pele de equinos tratada com plasma rico em plaquetas

    Get PDF
    O plasma rico em plaquetas (PRP) é um produto derivado da centrifugação do sangue total, sendo rico em fatores bioativos, como os de crescimento. Apesar da ampla utilização em processos cicatriciais, há controvérsia sobre a eficácia da terapia na cicatrização cutânea. O objetivo desse estudo foi quantificar e comparar a concentração dos fatores TGF-β1 e PDGF-BB no PRP, plasma sanguíneo e pele, durante diferentes fases do processo de cicatrização da pele tratada ou não com PRP. Foram utilizados sete equinos machos castrados, mestiços, hígidos, com idade entre 16 e 17 (16,14±0,63) anos. Três lesões em formato quadrangular (6,25cm²) foram produzidas cirurgicamente nas regiões glúteas direita e esquerda de todos os animais. Doze horas após indução das feridas, 0,5mL do PRP foi administrado em cada uma das quatro extremidades das feridas de uma das regiões glúteas (Grupo tratado = GT), escolhida aleatoriamente. A região contralateral foi utilizada como controle (GC). As feridas foram submetidas à limpeza diária com água Milli Q, e amostras foram obtidas mediante biópsias realizadas com Punch de 6mm. Foram obtidas seis biópsias de pele, sendo a primeira realizada logo após a produção da ferida (T0), e as demais com 1 (T1) 2 (T2) 7 (T3) e 14 (T4) dias após a indução da lesão. A sexta biópsia (T5) foi obtida após completo fechamento da pele, que ocorreu aproximadamente aos 37 dias (36,85±7,45, GC; 38,85±6,46, GT). Também foram obtidas amostras de sangue com EDTA em todos os tempos mencionados. A quantificação dos fatores de crescimento TGF-β1 e PDGF-BB na pele, PRP e plasma sanguíneo foi realizada pela técnica ELISA. Os dados foram analisados estatisticamente pelo teste t, correlação de Pearson e regressão, utilizando nível de significância de 5%. Não houve diferença entre os grupos, nos valores dos dois fatores de crescimento mensurados na pele, nos diferentes tempos. Também não houve correlação entre a quantidade dos fatores de crescimento presentes na pele e no plasma. Por outro lado, correlação positiva foi observada entre PRP e pele no grupo tratado, para os fatores de crescimento TGF-β1 (r=0,31) e PDGF-BB (r=0,38), bem como entre ambos os fatores de crescimento presentes no PRP (r=0,81). Considerando as concentrações dos fatores de crescimento no T0, os maiores valores cutâneos (p<0,05) do TGF-β1, em ambos os grupos, ocorreram nos tempos T3 e T5. Valores mais elevados (p<0,05) do PDGF-BB ocorreram no T4 (GT) e T5 (GC). No plasma não houve alteração nas concentrações desses fatores em relação ao T0, o que sugere que o PRP não acarreta efeito sistêmico, quando os procedimentos adotados na presente pesquisa são utilizados. A administração local de PRP no volume estudado, 12 h após indução cirúrgica de ferida cutânea na região glútea de equinos não ocasiona maiores concentrações dos fatores de crescimento TGF-β1 e PDGF-BB no plasma sanguíneo e pele, durante o processo de cicatrização

    The LAR protein tyrosine phosphatase enables PDGF beta-receptor activation through attenuation of the c-Abl kinase activity.

    No full text
    Contains fulltext : 98407.pdf (publisher's version ) (Closed access)The receptor tyrosine phosphatase (RPTP) LAR negatively regulates the activity of several receptor tyrosine kinases. To investigate if LAR affects the platelet-derived growth factor (PDGF) receptor signaling, mouse embryonic fibroblasts (MEFs) from mice where the LAR phosphatase domains were deleted (LARDeltaP), and wt littermates, were stimulated with 20ng/ml PDGF-BB. In LAR phosphatase deficient MEFs, the phosphorylation of the PDGF beta-receptor was surprisingly reduced, an event that was rescued by re-expression of wt LAR. The decreased phosphorylation of the PDGF beta-receptor was observed independent of ligand concentration and occurred on all tyrosine residues, as determined by immunoblotting analysis using site-selective phosphotyrosine antibodies. This suggests that LAR is required for full PDGF beta-receptor kinase activation. Downstream of receptor activation, phosphorylation of Akt and PLCgamma were decreased in LARDeltaP MEFs, whereas Src and Erk MAP kinase pathways were less affected. The proliferation of LARDeltaP MEFs in response to PDGF-BB was also reduced. The inhibitory effect on the PDGF beta-receptor in LARDeltaP cells was exerted via increased basal activity of c-Abl, since inhibition of c-Abl, by AG957 or siRNA, restored PDGF beta-receptor phosphorylation. These observations suggest that LAR reduces the basal c-Abl activity thereby allowing for PDGF beta-receptor kinase activation.1 juni 201

    Endothelial cells are activated during hypoxia via endoglin/ALK-1/SMAD1/5 signaling in vivo and in vitro

    No full text
    Endoglin (ENG) promotes angiogenesis by enhancing activation of TGF-beta type 1 receptors ALK-1 and ALK-5. ALK-1 phosphorylates transcription factors SMAD1/5, which bind to BMP-responsive elements (BRE), whereas ALK-5 phosphorylates SMAD3, which binds to CAGA elements Expression of ENG is increased during myocardial infarction (MI) We investigated which ENG signaling pathway is activated in endothelial cells during hypoxia. Expression of ENG, ALK-1, ALK-5. and phosphorylated SMAD1/3/5 by immunostaining and immunoblotting in a mouse model of myocardial infarction (MI) and In hypoxic human aortic endothelial cells (HAECs) was evaluated. Activation of BRE and CAGA was measured by luciferase assays in cells transfected with plasmids expressing ENG or ALK-1 and the number of cells was quantified mRNA expression of the target genes of TGF-beta signaling. ID1 and BCL-X, was quantified by real-time RT-PCR Expression of ENG, ALK-1 and phosphorylated SMAD1/5. but not ALK-5 or phosphorylated SMAD3, was significantly increased in hypoxic endothelial cells in vivo and in vitro Overexpression of both ENG and ALK-1 significantly increased BRE but not CAGA activity, expression of ID1 and BCL-X and the number of HAECs at hypoxia. ENG/ALK-1 signaling is one of the factors that regulate endothelial cell activity during adaptive cardiac angiogenesis (C) 2010 Elsevier Inc All rights reserve

    Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion

    No full text
    Deregulation of the transforming growth factor β (TGFβ) signal transduction cascade is functionally linked to cancer. In early phases, TGFβ acts as a tumor suppressor by inhibiting tumor cell proliferation, whereas in late phases, it can act as a tumor promoter by stimulating tumor cell invasion and metastasis. Smad transcriptional effectors mediate TGFβ responses, but relatively little is known about the Smad-containing complexes that are important for epithelial-mesenchymal transition and invasion. In this study, we have tested the hypothesis that specific members of the AP-1 transcription factor family determine TGFβ signaling specificity in breast cancer cell invasion. Using a 3D model of collagen-embedded spheroids of MCF10A-MII premalignant human breast cancer cells, we identified the AP-1 transcription factor components c-Jun, JunB, c-Fos and Fra1 as essential factors for TGFβ-induced invasion and found that various mesenchymal and invasion-associated TGFβ-induced genes are co-regulated by these proteins. In situ proximity ligation assays showed that TGFβ signaling not only induces complexes between Smad3 and Smad4 in the nucleus but also complexes between Smad2/3 and Fra1, whereas complexes between Smad3, c-Jun and JunB could already be detected before TGFβ stimulation. Finally, chromatin immunoprecipitations showed that c-Jun, JunB and Fra1, but not c-Fos, are required for TGFβ-induced binding of Smad2/3 to the mmp-10 and pai-1 promoters. Together these results suggest that in particular formation of Smad2/3-Fra1 complexes may reflect activation of the Smad/AP-1-dependent TGFβ-induced invasion program.Oncogene advance online publication, 27 August 2012; doi:10.1038/onc.2012.370.Signal transduction in aging related disease

    Targeting protein–protein interactions by rational design: mimicry of protein surfaces

    No full text
    Protein–protein interactions play key roles in a range of biological processes, and are therefore important targets for the design of novel therapeutics. Unlike in the design of enzyme active site inhibitors, the disruption of protein–protein interactions is far more challenging, due to such factors as the large interfacial areas involved and the relatively flat and featureless topologies of these surfaces. Nevertheless, in spite of such challenges, there has been considerable progress in recent years. In this review, we discuss this progress in the context of mimicry of protein surfaces: targeting protein–protein interactions by rational design
    corecore