1,506 research outputs found

    Extended Feedback Linearization Control for Voltage Regulation in a Buck Converter with an Unknown Resistive Load

    Get PDF
    This paper deals with the control problem in a buck converter while considering an unknown resistive load. The control design is based on extended feedback linearization (EFL) theory, which allows finding a general control law equivalent to the approximated feedback control method when the state variables are at the desired equilibrium point. The main advantage of an EFL controller is that the final feedback gains are independent of the converter parameters if and only if all the capacitances and inductances of the converter are perfectly known. To define the resistive load value, the inverse and invariance estimation method was employed, aiming to ensure the exponential convergence of the real resistive value. Numerical comparisons with an integral-action, passivity-based control design demonstrate the effectiveness of the proposed EFL approach. All numerical simulations were conducted in the PLECs simulation tool of the MATLAB/Simulink environment. © 2023 IEE

    Expansion for the solutions of the Bogomolny equations on the torus

    Full text link
    We show that the solutions of the Bogomolny equations for the Abelian Higgs model on a two-dimensional torus, can be expanded in powers of a quantity epsilon measuring the departure of the area from the critical area. This allows a precise determination of the shape of the solutions for all magnetic fluxes and arbitrary position of the Higgs field zeroes. The expansion is carried out to 51 orders for a couple of representative cases, including the unit flux case. We analyse the behaviour of the expansion in the limit of large areas, in which case the solutions approach those on the plane. Our results suggest convergence all the way up to infinite area.Comment: 26 pages, 8 figures, slightly revised version as published in JHE

    Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry

    Get PDF
    We investigate the macroscopic effects of charge density waves (CDW) and superconductivity in layered superconducting systems with broken lattice inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D) transition metal dichalcogenides (TMD). We work with the low temperature time dependent Ginzburg-Landau theory and study the coupling of lattice distortions and low energy CDW collective modes to the superconducting order parameter in the presence of electromagnetic fields. We show that superconductivity and piezoelectricity can coexist in these singular metals. Furthermore, our study indicates the nature of the quantum phase transition between a commensurate CDW phase and the stripe phase that has been observed as a function of applied pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.

    Possible Flavor Mixing Structures of Lepton Mass Matrices

    Get PDF
    To search for possible textures of lepton mass matrices, we systematically examine flavor mixing structures which can lead to large lepton mixing angles. We find out 37 mixing patterns are consistent with experimental data, taking into account phase factors in the mixing matrices. Only six of the patterns can explain the observed data without any tuning of parameters, while the others need particular choices for the phase values. It is found that these six mixing patterns are those predicted by the models which have been proposed to account for fermion mass hierarchies. On the other hand, the others may give new flavor mixing structures of lepton mass matrices and therefore new possibilities of model construction.Comment: 21 page

    CP Violation in a Supersymmetric SO(10) x U(2)_{F} Model

    Full text link
    A model based on SUSY SO(10) combined with U(2) family symmetry constructed recently by the authors is generalized to include phases in the mass matrices leading to CP violation. In contrast with the commonly used effective operator approach, 126ˉ\bar{126}-dimensional Higgs fields are utilized to construct the Yukawa sector. R-parity symmetry is thus preserved at low energies. The symmetric mass textures arising from the left-right symmetry breaking chain of SO(10) give rise to very good predictions for quark and lepton masses and mixings. The prediction for sin2β\sin 2\beta agrees with the average of current bounds from BaBar and Belle. In the neutrino sector, our predictions are in good agreement with results from atmospheric neutrino experiments. Our model favors both the LOW and QVO solutions to the solar neutrino anomaly; the matrix element for neutrinoless double beta decay is highly suppressed. The leptonic analog of the Jarlskog invariant, JCPlJ_{CP}^{l}, is predicted to be of O(102)O(10^{-2}).Comment: RevTeX4; 7 pages; typos corrected; clarification remarks added; more references added. To appear in Physical Review

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure
    corecore