410 research outputs found
Supersymmetric particle mass measurement with invariant mass correlations
The kinematic end-point technique for measuring the masses of supersymmetric
particles in R-Parity conserving models at hadron colliders is re-examined with
a focus on exploiting additional constraints arising from correlations in
invariant mass observables. The use of such correlations is shown to
potentially resolve the ambiguity in the interpretation of quark+lepton
end-points and enable discrimination between sequential two-body and three-body
lepton-producing decays. The use of these techniques is shown to improve the
SUSY particle mass measurement precision for the SPS1a benchmark model by at
least 20-30% compared to the conventional end-point technique.Comment: 29 pages, 23 .eps figures, JHEP3 style; v2 adds some references and
small clarifications to text; v3 adds some more clarifications to the tex
Mass Determination in SUSY-like Events with Missing Energy
We describe a kinematic method which is capable of determining the overall
mass scale in SUSY-like events at a hadron collider with two missing (dark
matter) particles. We focus on the kinematic topology in which a pair of
identical particles is produced with each decaying to two leptons and an
invisible particle (schematically, followed by each
decaying via where is invisible). This topology
arises in many SUSY processes such as squark and gluino production and decay,
not to mention t\anti t di-lepton decays. In the example where the final
state leptons are all muons, our errors on the masses of the particles ,
and in the decay chain range from 4 GeV for 2000 events after cuts to 13
GeV for 400 events after cuts. Errors for mass differences are much smaller.
Our ability to determine masses comes from considering all the kinematic
information in the event, including the missing momentum, in conjunction with
the quadratic constraints that arise from the , and mass-shell
conditions. Realistic missing momentum and lepton momenta uncertainties are
included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion
included in revised version that conforms to the version to be publishe
Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs
Simple supersymmetric grand unified models based on the gauge group SO(10)
require --in addition to gauge and matter unification-- the unification of
t-b-\tau Yukawa couplings. Yukawa unification, however, only occurs for very
special values of the soft SUSY breaking parameters. We perform a search using
a Markov Chain Monte Carlo (MCMC) technique to investigate model parameters and
sparticle mass spectra which occur in Yukawa-unified SUSY models, where we also
require the relic density of neutralino dark matter to saturate the
WMAP-measured abundance. We find the spectrum is characterizd by three mass
scales: first/second generation scalars in the multi-TeV range, third
generation scalars in the TeV range, and gauginos in the \sim 100 GeV range.
Most solutions give far too high a relic abundance of neutralino dark matter.
The dark matter discrepancy can be rectified by 1. allowing for neutralino
decay to axino plus photon, 2. imposing gaugino mass non-universality or 3.
imposing generational non-universality. In addition, the MCMC approach finds 4.
a compromise solution where scalar masses are not too heavy, and where
neutralino annihilation occurs via the light Higgs h resonance. By imposing
weak scale Higgs soft term boundary conditions, we are also able to generate 5.
low \mu, m_A solutions with neutralino annihilation via a light A resonance,
though these solutions seem to be excluded by CDF/D0 measurements of the B_s\to
\mu^+\mu^- branching fraction. Based on the dual requirements of Yukawa
coupling unification and dark matter relic density, we predict new physics
signals at the LHC from pair production of 350--450 GeV gluinos. The events are
characterized by very high b-jet multiplicity and a dilepton mass edge around
mz2-mz1 \sim 50-75 GeV.Comment: 35 pages with 21 eps figure
Measuring Supersymmetric Particle Masses at the LHC in Scenarios with Baryon-Number R-Parity Violating Couplings
The measurement of sparticle masses in the Minimal Supersymmetric Standard Model at the LHC is analysed, in the scenario where the lightest neutralino decays into three quarks. Such decays, occurring through the baryon-number violating coupling lambda"\_ijk, pose a severe challenge to the capability of the LHC detectors since the final state has no missing energy signature and a high jet multiplicity. We focus on the case of non-zero lambda"\_212 which is the most difficult experimentally. The proposed method is valid over a wide range of SUGRA parameter space with lambda"\_212 between 10^{-5}-0.1. Simulations are performed of the ATLAS detector at the Large Hadron Collider. Using the lightest neutralino from the decay chain left-squark to quark + next-to-lightest neutralino to right-slepton + lepton + quark and finally to lightest neutralino + lepton pair + quark, we show that the lightest and next-to-lightest neutralino masses can be measured by 3-jet and 3-jet + lepton pair invariant mass combinations. At the SUGRA point M_0=100 GeV, M_{1/2}=300 GeV, A_0=300 GeV, tan beta=10, sign of mu positive and with lambda"\_212=0.005, we achieve statistical (systematic) errors of 3 (3), 3 (3), 0.3 (4) and 5 (12) GeV respectively for the masses of the lightest neutralino, next-to-lightest neutralino, right-slepton and left-squark, with an integrated luminosity of 30 fb^{-1}
Discovery and Measurement of Sleptons, Binos, and Winos with a Z'
Extensions of the MSSM could significantly alter its phenomenology at the
LHC. We study the case in which the MSSM is extended by an additional U(1)
gauge symmetry, which is spontaneously broken at a few TeV. The production
cross-section of sleptons is enhanced over that of the MSSM by the process
, so the discovery potential for
sleptons is greatly increased. The flavor and charge information in the
resulting decay, , provides a useful handle on
the identity of the LSP. With the help of the additional kinematical constraint
of an on-shell Z', we implement a novel method to measure all of the
superpartner masses involved in this channel. For certain final states with two
invisible particles, one can construct kinematic observables bounded above by
parent particle masses. We demonstrate how output from one such observable,
m_T2, can become input to a second, increasing the number of measurements one
can make with a single decay chain. The method presented here represents a new
class of observables which could have a much wider range of applicability.Comment: 20 pages, 15 figures; v2 references added and minor change
Constraining Dark Matter in the MSSM at the LHC
In the event that R-Parity conserving supersymmetry (SUSY) is discovered at
the LHC, a key issue which will need to be addressed will be the consistency of
that signal with astrophysical and non-accelerator constraints on SUSY Dark
Matter. This issue is studied for the SPA benchmark model based on measurements
of end-points and thresholds in the invariant mass spectra of various
combinations of leptons and jets. These measurements are used to constrain the
soft SUSY breaking parameters at the electroweak scale in a general MSSM model.
Based on these constraints, we assess the accuracy with which the Dark Matter
relic density can be measured.Comment: 21 pages, 12 figure
Spin Measurements in Cascade Decays at the LHC
We systematically study the possibility of determining the spin of new
particles after their discovery at the LHC. We concentrate on angular
correlations in cascade decays. Motivated by constraints of electroweak
precision tests and the potential of providing a Cold Dark Matter candidate, we
focus on scenarios of new physics in which some discrete symmetry guarantees
the existence of stable neutral particles which escape the detector. More
specifically, we compare supersymmetry with another generic scenario in which
new physics particles have the same spin as their Standard Model partners. A
survey of possibilities of observing spin correlations in a broad range of
decay channels is carried out, with interesting ones identified. Rather than
confining ourselves to one "collider friendly" benchmark point (such as SPS1a),
we describe the parameter region in which any particular decay channel is
effective. We conduct a more detailed study of chargino's spin determination in
the decay channel . A scan
over the chargino and neutralino masses is performed. We find that as long as
the spectrum is not too degenerate the prospects for spin determination in this
channel are rather good.Comment: 36 pages, references added, 1 figure modifie
Supersymmetry and the LHC Inverse Problem
Given experimental evidence at the LHC for physics beyond the standard model,
how can we determine the nature of the underlying theory? We initiate an
approach to studying the "inverse map" from the space of LHC signatures to the
parameter space of theoretical models within the context of low-energy
supersymmetry, using 1808 LHC observables including essentially all those
suggested in the literature and a 15 dimensional parametrization of the
supersymmetric standard model. We show that the inverse map of a point in
signature space consists of a number of isolated islands in parameter space,
indicating the existence of "degeneracies"--qualitatively different models with
the same LHC signatures. The degeneracies have simple physical
characterizations, largely reflecting discrete ambiguities in electroweak-ino
spectrum, accompanied by small adjustments for the remaining soft parameters.
The number of degeneracies falls in the range 1<d<100, depending on whether or
not sleptons are copiously produced in cascade decays. This number is large
enough to represent a clear challenge but small enough to encourage looking for
new observables that can further break the degeneracies and determine at the
LHC most of the SUSY physics we care about. Degeneracies occur because
signatures are not independent, and our approach allows testing of any new
signature for its independence. Our methods can also be applied to any other
theory of physics beyond the standard model, allowing one to study how model
footprints differ in signature space and to test ways of distinguishing
qualitatively different possibilities for new physics at the LHC.Comment: 55 pages, 30 figure
Reconstructing Sparticle Mass Spectra using Hadronic Decays
Most sparticle decay cascades envisaged at the Large Hadron Collider (LHC)
involve hadronic decays of intermediate particles. We use state-of-the art
techniques based on the \kt jet algorithm to reconstruct the resulting hadronic
final states for simulated LHC events in a number of benchmark supersymmetric
scenarios. In particular, we show that a general method of selecting
preferentially boosted massive particles such as W, Z or Higgs bosons decaying
to jets, using sub-jets found by the \kt algorithm, suppresses QCD backgrounds
and thereby enhances the observability of signals that would otherwise be
indistinct. Consequently, measurements of the supersymmetric mass spectrum at
the per-cent level can be obtained from cascades including the hadronic decays
of such massive intermediate bosons.Comment: 1+29 pages, 12 figure
Measurement of SUSY masses via cascade decays for SPS 1a
If R-parity conserving supersymmetry exists below the TeV-scale, new particles will be produced and decay in cascades at the LHC. The lightest supersymmetric particle will escape the detectors, thereby complicating the full reconstruction of the decay chains. In this paper we expand on existing methods for determining the masses of the particles in the cascade from endpoints of kinematical distributions. We perform scans in the mSUGRA parameter space to delimit the region where this method is applicable. From the examination of theoretical distributions for a wide selection of mass scenarios it is found that caution must be exerted when equating the theoretical endpoints with the experimentally obtainable ones. We provide analytic formulae for the masses in terms of the endpoints most readily available. Complications due to the composite nature of the endpoint expressions are discussed in relation to the detailed analysis of two points on the SPS 1a line. Finally we demonstrate how a Linear Collider measurement can improve dramatically on the precision of the masses obtained
- …
