We systematically study the possibility of determining the spin of new
particles after their discovery at the LHC. We concentrate on angular
correlations in cascade decays. Motivated by constraints of electroweak
precision tests and the potential of providing a Cold Dark Matter candidate, we
focus on scenarios of new physics in which some discrete symmetry guarantees
the existence of stable neutral particles which escape the detector. More
specifically, we compare supersymmetry with another generic scenario in which
new physics particles have the same spin as their Standard Model partners. A
survey of possibilities of observing spin correlations in a broad range of
decay channels is carried out, with interesting ones identified. Rather than
confining ourselves to one "collider friendly" benchmark point (such as SPS1a),
we describe the parameter region in which any particular decay channel is
effective. We conduct a more detailed study of chargino's spin determination in
the decay channel q~→q+C~±→q+W±+LSP. A scan
over the chargino and neutralino masses is performed. We find that as long as
the spectrum is not too degenerate the prospects for spin determination in this
channel are rather good.Comment: 36 pages, references added, 1 figure modifie