24 research outputs found
A two-step learning approach for solving full and almost full cold start problems in dyadic prediction
Dyadic prediction methods operate on pairs of objects (dyads), aiming to
infer labels for out-of-sample dyads. We consider the full and almost full cold
start problem in dyadic prediction, a setting that occurs when both objects in
an out-of-sample dyad have not been observed during training, or if one of them
has been observed, but very few times. A popular approach for addressing this
problem is to train a model that makes predictions based on a pairwise feature
representation of the dyads, or, in case of kernel methods, based on a tensor
product pairwise kernel. As an alternative to such a kernel approach, we
introduce a novel two-step learning algorithm that borrows ideas from the
fields of pairwise learning and spectral filtering. We show theoretically that
the two-step method is very closely related to the tensor product kernel
approach, and experimentally that it yields a slightly better predictive
performance. Moreover, unlike existing tensor product kernel methods, the
two-step method allows closed-form solutions for training and parameter
selection via cross-validation estimates both in the full and almost full cold
start settings, making the approach much more efficient and straightforward to
implement
Разработка тест-системы для идентификации и определения чувствительности к антибиотикам возбудителей анаэробной хирургической инфекции
бактерии анаэробныелекарственная устойчивость у бактерийхирургическая раневая инфекци
Expokit: A software package for computing matrix exponentials
Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains
An inexact primal-dual path following algorithm for convex quadratic SDP
10.1007/s10107-006-0088-yMathematical Programming1121221-25