875 research outputs found

    One-line γ ray spectroscopic investigation of the 180Hg(T 1/2 = 3 s) decay chain

    No full text
    With the rebuilt ISOLDE 2 facility we have investigated on-line the 18080Hg decay products. The decay half-lives, the energies and intensities of the main γ lines of both 180Hg(T 1/2 = 3.0 ± 0.3 s) and 18079Au(T1/2 = 8.1 ± 0.3 s) , and a tentative decay scheme of 18078Pt are given

    Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules

    Full text link
    In this work, we calculate the mass spectrum of doubly heavy baryons with the diquark model in terms of the QCD sum rules. The interpolating currents are composed of a heavy diquark field and a light quark field. Contributions of the operators up to dimension six are taken into account in the operator product expansion. Within a reasonable error tolerance, our numerical results are compatible with other theoretical predictions. This indicates that the diquark picture reflects the reality and is applicable to the study of doubly heavy baryons.Comment: 23 pages, 9 figures, minor corrections in expression

    Operator-Based Truncation Scheme Based on the Many-Body Fermion Density Matrix

    Full text link
    In [S. A. Cheong and C. L. Henley, cond-mat/0206196 (2002)], we found that the many-particle eigenvalues and eigenstates of the many-body density matrix ρB\rho_B of a block of BB sites cut out from an infinite chain of noninteracting spinless fermions can all be constructed out of the one-particle eigenvalues and one-particle eigenstates respectively. In this paper we developed a statistical-mechanical analogy between the density matrix eigenstates and the many-body states of a system of noninteracting fermions. Each density matrix eigenstate corresponds to a particular set of occupation of single-particle pseudo-energy levels, and the density matrix eigenstate with the largest weight, having the structure of a Fermi sea ground state, unambiguously defines a pseudo-Fermi level. We then outlined the main ideas behind an operator-based truncation of the density matrix eigenstates, where single-particle pseudo-energy levels far away from the pseudo-Fermi level are removed as degrees of freedom. We report numerical evidence for scaling behaviours in the single-particle pseudo-energy spectrum for different block sizes BB and different filling fractions \nbar. With the aid of these scaling relations, which tells us that the block size BB plays the role of an inverse temperature in the statistical-mechanical description of the density matrix eigenstates and eigenvalues, we looked into the performance of our operator-based truncation scheme in minimizing the discarded density matrix weight and the error in calculating the dispersion relation for elementary excitations. This performance was compared against that of the traditional density matrix-based truncation scheme, as well as against a operator-based plane wave truncation scheme, and found to be very satisfactory.Comment: 22 pages in RevTeX4 format, 22 figures. Uses amsmath, amssymb, graphicx and mathrsfs package

    The relative efficacy of different strain combinations of lactic acid bacteria in the reduction of populations of Salmonella enterica Typhimurium in the livers and spleens of mice

    Get PDF
    Multispecies probiotics have been reported to be more effective than monostrain probiotics in health promoting for the host. In this study, 12 lactic acid bacteria (LAB) strains were selected based on the level of induction of tumor necrosis factor (TNF)-alpha in RAW 264.7 macrophage cells. Their adherence to Caco-2 cells and inhibitory effects on Salmonella invasion of Caco-2 cells were compared. Strains with different probiotic properties were then combined and BALB/c mice were fed with LAB strains for 63 days; then the mice were challenged with Salmonella on day 64. For Salmonella-unchallenged mice that received a multistrain combination of LAB strains that have greater TNF-alpha production in macrophages, greater adherence and inhibit Salmonella invasion of Caco-2 cells to a greater extent, their peritoneal macrophages had greater phagocytic activity. For Salmonella-challenged mice, a significant reduction of Salmonella cells in the livers and spleens of the mice was observed 8 days post challenge. The addition of 12% skim milk powder together with LAB strain combinations significantly enhanced the reduction of Salmonella cells in the mice livers and spleens. In conclusion, we have shown that LAB strain combinations with particular probiotic properties when fed to mice can inhibit Salmonella invasion of the liver and spleen

    Angular momenta creation in relativistic electron-positron plasma

    Get PDF
    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrodinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe.Comment: 20 pages, 6 figure

    Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study

    Get PDF
    A study of rotational properties of the ground superdeformed bands in \Hg{0}, \Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint IPN-TH 93-6

    Prediction of Mechanical Properties of Polymers With Various Force Fields

    Get PDF
    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma

    Get PDF
    A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma
    corecore