8 research outputs found

    Theory, simulation, and observation of discrete eigenmodes associated with lower hybrid solitary structures

    No full text
    International audienceA three-dimensional fluid description of nonlinear lower hybrid waves is investigated in the context of plasma density depletions. The objective is a basic understanding of lower hybrid solitary structures associated with transverse ion acceleration in the topside auroral ionosphere. The equations are linearized about a parabolic density depletion and solved. The solution consists of potential structures (eigenfunctions) which rotate in angle about the center of the density depletion. The eigenfrequencies are discrete for Iwl • w•. These eigenfunctions rotate in a left-handed sense about the geomagnetic field and the solutions fall off exponentially outside the density depletion. The eigenfrequencies are continuous for Iwl • w•a and kz • 0 but become discrete for kz-0 in agreement with previous two-dimensional results [Seyler, 1994]. Simulations of the full nonlinear system are performed, and rotating eigenmodes are extracted from the spectrum. The results agree with the analytic results obtained from the linearized equations. The spectral properties of a lower hybrid solitary structure from the TOPAZ III sounding rocket are reexamined and found to be consistent with theoretical predictions for lower hybrid waves trapped within a density depletion as presented herein. A local wavelet frequency-wavenumber spectrum is constructed from data taken by moving an interferometer through a simulation at a typical rocket velocity. The results compare favorably with the local frequency-wavenumber spectrum of a lower hybrid solitary structure observed by the TOPAZ II! sounding rocket

    Quiet, Discrete Auroral Arcs: Acceleration Mechanisms

    No full text

    Fundamentals and Applications of Chitosan

    No full text
    International audienceChitosan is a biopolymer obtained from chitin, one of the most abundant and renewable material on Earth. Chitin is a primary component of cell walls in fungi, the exoskeletons of arthropods, such as crustaceans, e.g. crabs, lobsters and shrimps, and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians. The discovery of chitin in 1811 is attributed to Henri Braconnot while the history of chitosan dates back to 1859 with the work of Charles Rouget. The name of chitosan was, however, introduced in 1894 by Felix Hoppe-Seyler. Because of its particular macromolecular structure, biocompatibility, biode-gradability and other intrinsic functional properties, chitosan has attracted major scientific and industrial interests from the late 1970s. Chitosan and its derivatives have practical applications in food industry, agriculture, pharmacy, medicine, cos-metology, textile and paper industries, and chemistry. In the last two decades, chito-san has also received much attention in numerous other fields such as dentistry, ophthalmology, biomedicine and bio-imaging, hygiene and personal care, veterinary medicine, packaging industry, agrochemistry, aquaculture, functional textiles and cosmetotextiles, catalysis, chromatography, beverage industry, photography, wastewater treatment and sludge dewatering, and biotechnology. Nutraceuticals and cosmeceuticals are actually growing markets, and therapeutic and biomedical products should be the next markets in the development of chitosan. Chitosan is also the N. Morin-Crini (*) · Laboratoire Chrono-environnement, UMR 6249, UFR Sciences et Techniques
    corecore