83 research outputs found

    ep → ep π⁰ Reaction Studied in the Δ(1232) Mass Region Using Polarization Asymmetries

    Get PDF
    Measurements of the angular distributions of target and double-spin asymmetries for the Δ+(1232) in the exclusive channel → p(→e,e\u27p)π0 obtained at the Jefferson Lab in the Q2 range from 0.5 to 1.5 GeV2/c2 are presented. Results of the asymmetries are compared with the unitary isobar model [D. Drechsel , Nucl. Phys. A645, 145 (1999)], dynamical models [T. Sato and T. S. Lee, Phys. Rev. C 54, 2660 (1996); S. S. Kamalov , Phys. Lett. B 27, 522 (2001)], and the effective Lagrangian theory [R. M. Davidson , Phys. Rev. D 43, 71 (1991)]. Sensitivity to the different models was observed, particularly in relation to the description of background terms on which the target asymmetry depends significantly

    Electron Scattering from High-Momentum Neutrons in Deuterium

    Get PDF
    We report results from an experiment measuring the semiinclusive reaction 2H(e,eâ€Čps) in which the proton ps is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory\u27s Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W∗, backward proton momentum →ps, and momentum transfer Q2. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a “bound neutron structure function” Feff2n was extracted as a function of W∗ and the scaling variable x∗ at extreme backward kinematics, where the effects of FSI appear to be smaller. For ps \u3e 0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of Feff2n in the region of x∗ between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron\u27s “off-shell-ness” is one possible effect that can cause the observed deviation

    Factorizing the hard and soft spectator scattering contributions for the nucleon form factor F_1 at large Q^2

    Full text link
    We investigate the soft spectator scattering contribution for the FF F1F_{1}. We focus our attention on factorization of the hard-collinear scale ∌QΛ\sim Q\Lambda corresponding to transition from SCET-I to SCET-II. We compute the leading order jet functions and find that the convolution integrals over the soft fractions are logarithmically divergent. This divergency is the consequence of the boost invariance and does not depend on the model of the soft correlation function describing the soft spectator quarks. Using as example a two-loop diagram we demonstrated that such a divergency corresponds to the overlap of the soft and collinear regions. As a result one obtains large rapidity logarithm which must be included in the correct factorization formalism. We conclude that a consistent description of the factorization for F1F_{1} implies the end-point collinear divergencies in the hard and soft spectator contributions, i.e. convolution integrals with respect to collinear fractions are not well-defined. Such scenario can only be realized when the twist-3 nucleon distribution amplitude has specific end-point behavior which differs from one expected from the evolution of the nucleon distribution amplitude. Such behavior leads to the violation of the collinear factorization for the hard spectator scattering contribution. We suggest that the soft spectator scattering and chiral symmetry breaking provide the mechanism responsible for the violation of collinear factorization in case of form factor F1F_{1}.Comment: 25 pages, 6 figures, text is improved, few typos corrected, one figure added, statement about end-point behavior of the nucleon DA is formulated more accuratel

    Real and Virtual Compton Scattering: the nucleon polarisabilities

    Full text link
    We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deforms under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.Comment: 20 pages, 12 figures. Minireview/Proceedings of "Many-Body Structure of Strongly Interacting Systems", Mainz, Germany, Feb. 23-25 2011 . V2: typos corrected. version to appear in EPJ Special Topic

    Nucleon electromagnetic form factors in a quark-gluon core model

    Full text link
    We study the nucleon electromagnetic form factors in a quark-gluon core model framework, which can be viewed as an extension of the Isgur-Karl model of baryons. Using this picture we derive nucleon electromagnetic dipole form factors at low Q^2 and the deviation from the dipole form at high Q^2, that are consistent with the existing experimental data.Comment: 5 pages, 3 figure

    A new measurement of the structure functions PLL−PTT/epsilonP_{LL}-P_{TT}/epsilon and PLTP_{LT} in virtual Compton scattering at Q2=Q^2= 0.33 (GeV/c)2^2

    Full text link
    The cross section of the ep→eâ€Čpâ€ČÎłep \to e' p' \gamma reaction has been measured at Q2=0.33Q^2 = 0.33 (GeV/c)2^2. The experiment was performed using the electron beam of the MAMI accelerator and the standard detector setup of the A1 Collaboration. The cross section is analyzed using the low-energy theorem for virtual Compton scattering, yielding a new determination of the two structure functions P_LL}-P_{TT}/epsilon and PLTP_{LT} which are linear combinations of the generalized polarizabilities of the proton. We find somewhat larger values than in the previous investigation at the same Q2Q^2. This difference, however, is purely due to our more refined analysis of the data. The results tend to confirm the non-trivial Q2Q^2-evolution of the generalized polarizabilities and call for more measurements in the low-Q2Q^2 region (≀\le 1 (GeV/c)2^2).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and figure

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1p−Γ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters

    Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering

    Get PDF
    We present the first measurements of the \vec{e}p->epg cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region. The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross section indicates the twist-2 dominance of DVCS, proving that generalized parton distributions (GPDs) are accessible to experiment at moderate Q^2. The helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We present the first model-independent measurement of linear combinations of GPDs and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication. References added. One figure remove

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,eâ€Čp)Îł(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,eâ€Čp)Îł(e,e'p)\gamma to H(e,eâ€Čp)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure
    • 

    corecore