629 research outputs found

    The prevention and treatment of childhood obesity.

    Get PDF
    The effectiveness of interventions used in the prevention and treatment of childhood obesity published in a recent issue of Effective Heath Care is reviewed

    Survey of nucleon electromagnetic form factors

    Full text link
    A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare' covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pion's charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.Comment: 43 pages, 17 figures, 12 tables, 5 appendice

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Immunosenescence in wild animals:Meta-analysis and outlook

    Get PDF
    Immunosenescence, the decline in immune defense with age, is an important mortality source in elderly humans but little is known of immunosenescence in wild animals. We systematically reviewed and meta-analysed evidence for age-related changes in immunity in captive and free-living populations of wild species (321 effect sizes in 62 studies across 44 species of mammals, birds and reptiles). As in humans, senescence was more evident in adaptive (acquired) than innate immune functions. Declines were evident for cell function (antibody response), the relative abundance of naive immune cells and an in vivo measure of overall immune responsiveness (local response to phytohaemagglutinin injection). Inflammatory markers increased with age, similar to chronic inflammation associated with human immunosenescence. Comparisons across taxa and captive vs free-living animals were difficult due to lack of overlap in parameters and species measured. Most studies are cross-sectional, which yields biased estimates of age-effects when immune function co-varies with survival. We therefore suggest longitudinal sampling approaches, and highlight techniques from human cohort studies that can be incorporated into ecological research. We also identify avenues to address predictions from evolutionary theory and the contribution of immunosenescence to age-related increases in disease susceptibility and mortality

    Exploring rumen microbe-derived fibre-degrading activities for improving feed digestibility

    Get PDF
    Ruminal fibre degradation is mediated by a complex community of rumen microbes, and its efficiency is crucial for optimal dairy productivity. Enzymes produced by rumen microbes are primarily responsible for degrading the complex structural polysaccharides that comprise fibre in the plant cell walls of feed materials. Because rumen microbes have evolved with their ruminant hosts over millions of years to perform this task, their enzymes are hypothesised to be optimally suited for activity at the temperature, pH range, and anaerobic environment of the rumen. However, fibre-rich diets are not fully digested, which represents a loss in potential animal productivity. Thus, there is opportunity to improve fibre utilisation through treating feeds with rumen microbe-derived fibrolytic enzymes and associated activities that enhance fibre degradation. This research aims to gain a better understanding of the key rumen microbes involved in fibre degradation and the mechanisms they employ to degrade fibre, by applying cultivation-based and culture-independent genomics approaches to rumen microbial communities of New Zealand dairy cattle. Using this knowledge, we aim to identify new opportunities for improving fibre degradation to enhance dairy productivity. Rumen content samples were taken over the course of a year from a Waikato dairy production herd. Over 1,000 rumen bacterial cultures were obtained from the plant-adherent fraction of the rumen contents. Among these cultures, two, 59 and 103 potentially new families, genera and species of rumen bacteria were identified, respectively. Many of the novel strains are being genome sequenced within the Hungate 1000 rumen microbial reference genome programme, which is providing deeper insights into the range of mechanisms used by the individual strains for fibre degradation. This information has been used to guide the selection of rumen bacterial strains with considerable potential as fibrolytic enzyme producers in vitro, with the intent of developing the strains so that their enzymes may be used as feed pre-treatments for use on farm. Culture-independent metagenomic approaches were also used to explore the activities involved in fibre degradation from the rumen microbial communities. Functional screening has revealed a range of novel enzymes and a novel fibre disrupting activity. Enrichment for the cell-secreted proteins from the community revealed evidence of a diverse range of cellulosomes, which are cell-surface associated multi-enzyme complexes that efficiently degrade plant cell wall polysaccharides. Biochemical and structural characterisation of these proteins has been conducted. In conclusion, cultivation and culture-independent genomic approaches have been applied to New Zealand bovine rumen microbial communities, and have provided considerable new insights into ruminal fibre degradation processes. Novel activities and bacterial species that display desirable activities on fibrous substrates in vitro are now being explored for their potential to improve ruminal fibre degradation, to allow the development of new technologies that will enhance dairy productivity

    Diverse Durham collection phages demonstrate complex BREX defence responses

    Get PDF
    Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria–phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility

    Opportunities for advances in climate change economics

    Get PDF
    There have been dramatic advances in understanding the physical science of climate change, facilitated by substantial and reliable research support. The social value of these advances depends on understanding their implications for society, an arena where research support has been more modest and research progress slower. Some advances have been made in understanding and formalizing climate-economy linkages, but knowledge gaps remain [e.g., as discussed in (1, 2)]. We outline three areas where we believe research progress on climate economics is both sorely needed, in light of policy relevance, and possible within the next few years given appropriate funding: (i) refining the social cost of carbon (SCC), (ii) improving understanding of the consequences of particular policies, and (iii) better understanding of the economic impacts and policy choices in developing economies
    corecore