23 research outputs found

    Pollination of Pagamea duckei Standl. (Rubiaceae): a functionally dioecious species

    Get PDF
    The floral biology, pollination and breeding system of Pagamea duckei Standl. (Rubiaceae) were studied at the Reserva Biológica da Campina, Manaus, Amazonas, Brazil. Floral morphology suggested that P. duckei is a distylous species. However, crossing experiments revealed that it is functionally dioecious. The flowers are actinomorphic, yellowish, produce nectar and a sweet odor, which is more intense in the morning. Anthesis started in the morning between 5.00 and 6.00 AM and extended until dusk, when the corolla tube abscissed. The flowers were visited mostly by bees of the genus Melipona. Pagamea duckei is not agamospermic and thus needs pollen vectors for effective pollination. The results of this study strengthen the idea that, in Pagamea, species with distylous flower morphology are actually functionally dioecious

    Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae) I. Pattern of pollen dispersal

    No full text
    Pollen dispersal was characterized within a population of the narrowly endemic perennial herb, Centaurea corymbosa, using exclusion-based and likelihood-based paternity analyses carried out on microsatellite data. Data were used to fit a model of pollen dispersal and to estimate the rates of pollen flow and mutation/genotyping error, by developing a new method. Selfing was rare (1.6%). Pollen dispersed isotropically around each flowering plant following a leptokurtic distribution, with 50% of mating pairs separated by less than 11 m, but 22% by more than 40 m. Estimates of pollen flow lacked precision (0-25%), partially because mutations and/or genotyping errors (0.03-1%) could also explain the occurrence of offspring without a compatible candidate father. However, the pollen pool that fertilized these offspring was little differentiated from the adults of the population whereas strongly differentiated from the other populations, suggesting that pollen flow rate among populations was low. Our results suggest that pollen dispersal is too extended to allow differentiation by local adaptation within a population. However, among populations, gene flow might be low enough for such processes to occur.FLWINinfo:eu-repo/semantics/publishe
    corecore