1,101 research outputs found

    On the Implications of Discrete Symmetries for the Beta Function of Quantum Hall Systems

    Full text link
    We argue that the large discrete symmetry group of quantum Hall systems is insufficient in itself to determine the complete beta function for the scaling of the conductivities, σxx\sigma_{xx} and σxy\sigma_{xy}. We illustrate this point by showing that a recent ansatz for this function is one of a many-parameter family. A clean prediction for the delocalization exponents for these systems therefore requires the specification of more information, such as past proposals that the beta function is either holomorphic or quasi-holomorphic in the variable z=(/e2)(σxy+iσxx)z = (\hbar/e^2)(\sigma_{xy} + i\sigma_{xx}).Comment: Minor typographical errors corrected. 6 pages, LaTeX, no figure

    Readiness for PENicillin allergy testing: Perception of Allergy Label (PEN-PAL) Survey

    Get PDF
    Clinical Implications: Patients reporting penicillin allergy believe their allergy to be permanent, would take penicillins if tested negative, but are rarely referred for penicillin testing, leading to differential antibiotic utilization

    Duality and Non-linear Response for Quantum Hall Systems

    Get PDF
    We derive the implications of particle-vortex duality for the electromagnetic response of Quantum Hall systems beyond the linear-response regime. This provides a first theoretical explanation of the remarkable duality which has been observed in the nonlinear regime for the electromagnetic response of Quantum Hall systems.Comment: 7 pages, 1 figure, typeset in LaTe

    Nonlinear corrections to the DGLAP equations; looking for the saturation limits

    Get PDF
    The effects of the first nonlinear corrections to the DGLAP equations are studied in light of the HERA data. Saturation limits are determined in the DGLAP+GLRMQ approach for the free proton and for the Pb nucleus.The effects of the first nonlinear corrections to the DGLAP equations are studied in light of the HERA data. Saturation limits are determined in the DGLAP+GLRMQ approach for the free proton and for the Pb nucleus.The effects of the first nonlinear corrections to the DGLAP equations are studied in light of the HERA data. Saturation limits are determined in the DGLAP+GLRMQ approach for the free proton and for the Pb nucleus

    One-Dimensional Flows in the Quantum Hall System

    Full text link
    We construct the c-function whose gradient determines the RG flow of the conductivities (sigma_xy and sigma_xx) for a quantum Hall system, subject to two assumptions. (1) We take the flow to be invariant with respect to the infinite discrete symmetry group, recently proposed by several workers to explain the `superuniversality' of the delocalization exponents in these systems. (2) We also suppose the flow to be `quasi-holomorphic' (which we make precise) in the sense that it is as close as possible to a one-dimensional flow in the complex parameter sigma_xy +i sigma_xx. These assumptions together with the known asymptotic behaviour for large sigma_xx, completely determine the c-function, and so the phase diagram, for these systems. A complete description of the RG flow also requires a metric in addition to the c-function, and we identify the features which are required for this by the RG. A similar construction produces the c-function for other systems enjoying an infinite discrete symmetry, such as for supersymmetric QED.Comment: 17 pages of Te

    Experimental probes of emergent symmetries in the quantum Hall system

    Full text link
    Experiments studying renormalization group flows in the quantum Hall system provide significant evidence for the existence of an emergent holomorphic modular symmetry Γ0(2)\Gamma_0(2). We briefly review this evidence and show that, for the lowest temperatures, the experimental determination of the position of the quantum critical points agrees to the parts \emph{per mille} level with the prediction from Γ0(2)\Gamma_0(2). We present evidence that experiments giving results that deviate substantially from the symmetry predictions are not cold enough to be in the quantum critical domain. We show how the modular symmetry extended by a non-holomorphic particle-hole duality leads to an extensive web of dualities related to those in plateau-insulator transitions, and we derive a formula relating dual pairs (B,Bd)(B,B_d) of magnetic field strengths across any transition. The experimental data obtained for the transition studied so far is in excellent agreement with the duality relations following from this emergent symmetry, and rule out the duality rule derived from the ``law of corresponding states". Comparing these generalized duality predictions with future experiments on other transitions should provide stringent tests of modular duality deep in the non-linear domain far from the quantum critical points.Comment: 12 pages, 9 figure

    Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit

    Full text link
    We propose a simple scheme for implementing quantum logic gates with a string of two-level trapped cold ions outside the Lamb-Dicke limit. Two internal states of each ion are used as one computational qubit (CQ) and the collective vibration of ions acts as the information bus, i.e., bus qubit (BQ). Using the quantum dynamics for the laser-ion interaction as described by a generalized Jaynes-Cummings model, we show that quantum entanglement between any one CQ and the BQ can be coherently manipulated by applying classical laser beams. As a result, universal quantum gates, i.e. the one-qubit rotation and two-qubit controlled gates, can be implemented exactly. The required experimental parameters for the implementation, including the Lamb-Dicke (LD) parameter and the durations of the applied laser pulses, are derived. Neither the LD approximation for the laser-ion interaction nor the auxiliary atomic level is needed in the present scheme.Comment: 12 pages, no figures, to appear in Phys. Rev.

    Myers' type theorems and some related oscillation results

    Full text link
    In this paper we study the behavior of solutions of a second order differential equation. The existence of a zero and its localization allow us to get some compactness results. In particular we obtain a Myers' type theorem even in the presence of an amount of negative curvature. The technique we use also applies to the study of spectral properties of Schroedinger operators on complete manifolds.Comment: 16 page

    Flavor Changing Effects in Family Nonuniversal Z' Models

    Get PDF
    Flavor-changing and CP-violating interactions of Z' to fermions are generally present in models with extra U(1) gauge symmetry that are string-inspired or related to broken gauged family symmetry. We study the consequences of such couplings in fermion electric dipole moments, muon g-2, and K and B meson mixings. From experimental limits or measured values, we constrain the off-diagonal Z' couplings to fermions. Some of these constraints are comparable or stronger than the existing constraints obtained from other observables.Comment: 17 pages, 2 figure
    corecore