26 research outputs found

    Time for a consensus conference on pain in neurorehabilitation

    Get PDF

    Gaia Early Data Release 3: acceleration of the solar system from Gaia astrometry

    Get PDF
    Stars and planetary system

    Quadratic Planar Systems With Two Parallel Invariant Straight Lines

    No full text
    In this paper, we classify the global phase portraits of all quadratic planar systems with two parallel invariant straight lines. The main techniques used are Poincaƕe Compactification and Normal Forms Theory combined with the Neumann's Theorem. © 2008 BirkhĂ€user Verlag Basel/Switzerland.72295316Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.L., (1973) Qualitative theory of second-order dynamic systems, , Wiley, New YorkBusse, F.H., (1978) Transitions to turbulence via the statistical limit cycle route Synergetics, , Springer, BerlinCairĂł, L.L., Llibre, J., (2007) Phase portraits of quadratic polynomial vector fields having a rational first integral of degree, 67 (2), pp. 327-375. , Nonlinear AnalysisCairĂł, L.L., Llibre, J., Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2 (2007) Journal of Physics A: Mathematical and Theoretical, 40, pp. 6329-6348Gonzales, E.A.V., Generic properties of polynomial vector fields at infinity (1969) Trans. Amer. Math. Soc, 143, pp. 201-222Lamb, W.E., Theory of an optical maser (1964) Phys. Rev. A, 134, p. 1429Laval, G., Pellat, R., Plasma Physics (1975) Proc. Summer School of Theoretical Physics, , In:, Gordon and Breach, New YorkLlibre, J., Medrado, J.C., Darboux integrability and reversible quadratic vector fields (2005) Rocky Mountain J. Math, 35, pp. 1999-2057Lotka, A.J., Analytical note on certain rhythmic relations in organic systems (1920) Proc. Natl Acad. Sci. USA, 6, pp. 410-415Markus, L., Global structure of ordinary differential equations in the plane (1954) Trans. Amer. Math. Soc, 76, pp. 127-148May, R.M., (1974) Stability and complexity in model ecosystems, , Princeton University Press, PrincetonMedrado, J.C.R., Teixeira, M.A., Symmetric singularities of reversible vector fields in dimension three (1998) Phys. D, 112, pp. 122-131Neumann, D., Classification of continuous flows on 2-manifolds (1975) Proc. Amer. Math. Soc, 48, pp. 73-81Volterra, V., (1931) Leçons sur la ThĂ©orie MathĂ©matique de la Lutte pour la vie, , Gauthier Villars, Pari

    Slow-fast Systems On Algebraic Varieties Bordering Piecewise-smooth Dynamical Systems

    No full text
    This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C k discontinuous vector field Z on Rn is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F:U→R a polynomial function defined on the open subset U⊂Rn. The set F -1(0) divides U into subdomains U1,U2,. . .,Uk, with border F -1(0). These subdomains provide a Whitney stratification on U. We consider Zi:Ui→Rn smooth vector fields and we get Z=(Z 1, . . ., Z k) a discontinuous vector field with discontinuities in F -1(0). Our approach combines several techniques such as Δ-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an Δ-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). © 2011 Elsevier Masson SAS.1364444462Alexander, J.C., Seidman, T.I., Sliding modes in intersecting switching surfaces. I. Blending (1998) Houston J. Math., 24, pp. 545-569Alexander, J.C., Seidman, T.I., Sliding modes in intersecting switching surfaces. II. Hysteresis (1999) Houston J. Math., 25, pp. 185-211Andronov, A.A., Vitt, A.A., Khaikin, S.E., (1966) Theory of Oscillators, , Dover, New YorkBuzzi, C., Silva, P.R., Teixeira, M.A., A singular approach to discontinuous vector fields on the plane (2006) J. Differential Equations, 231, pp. 633-655di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Piecewise-Smooth Dynamical Systems. Theory and Applications (2008) Appl. Math. Sci., 163. , Springer-Verlag, LondonDumortier, F., Roussarie, R., Canard cycles and center manifolds (1996) Mem. Amer. Math. Soc., 121Fenichel, N., Geometric singular perturbation theory for ordinary differential equations (1979) J. Differential Equations, 31, pp. 53-98Filippov, A.F., Differential Equations with Discontinuous Right-Hand Sides (1988) Math. Appl. (Soviet Ser.), , Kluwer Academic Publishers, DordrechtJones, C., Geometric singular perturbation theory (1995) Lecture Notes in Math., 1609. , Springer-Verlag, Heidelberg, C.I.M.E. LecturesKozlova, V.S., Structural stability of a discontinuous system (1984) Vestnik Moskov. Univ. Ser. I Mat. Mekh., 5, pp. 16-20Kuznetsov, Y.A., Rinaldi, S., Gragnani, A., One-parameter bifurcations in planar Filippov systems (2003) Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (8), pp. 2157-2188Llibre, J., Silva, P.R., Teixeira, M.A., Regularization of discontinuous vector fields via singular perturbation (2007) J. Dynam. Differential Equations, 19 (2), pp. 309-331Llibre, J., Silva, P.R., Teixeira, M.A., Sliding vector fields via slow fast systems (2008) Bull. Belg. Math. Soc. Simon Stevin, 15, pp. 851-869Llibre, J., Silva, P.R., Teixeira, M.A., Study of singularities in non smooth dynamical systems via singular perturbation (2009) SIAM J. Appl. Dyn. Syst., 8, pp. 508-526Llibre, J., Teixeira, M.A., Regularization of discontinuous vector fields in dimension three (1997) Discrete Contin. Dyn. Syst., 3, pp. 235-241Minorsky, N., (1969) Theory of Nonlinear Control Systems, p. 331. , McGraw-Hill, New York, London, Sydney, xxSeidman, T., (2006) Proc. Dover Conf., , Aspects of modeling with discontinuities, in: G. N'Guerekata (Ed.), Advances in Applied and Computational MathematicsSotomayor, J., Teixeira, M.A., Regularization of discontinuous vector fields (1996), 95, pp. 207-223. , in: International Conference on Differential Equations, Lisboa, EquadiffTeixeira, M.A., Stability conditions for discontinuous vector fields (1990) J. Differential Equations, 88, pp. 15-24Teixeira, M.A., Generic bifurcation of sliding vector fields (1993) J. Math. Anal. Appl., 176, pp. 436-457Teixeira, M.A., Perturbation theory for non-smooth systems (2009) Encyclopedia of Complexity and Systems Science, vol. 22 (Perturbation Theory), pp. 6697-6719. , Springer-Verlag, New York, R. Meyers (Ed.)Whitney, H., Elementary structure of real algebraic varieties (1957) Ann. of Math., 66, pp. 545-55

    Birth Of Limit Cycles Bifurcating From A Nonsmooth Center

    No full text
    This paper is concerned with a codimension analysis of a two-fold singularity of piecewise smooth planar vector fields, when it behaves itself like a center of smooth vector fields (also called nondegenerate σ-center). We prove that any nondegenerate σ-center is σ-equivalent to a particular normal form Z0. Given a positive integer number k we explicitly construct families of piecewise smooth vector fields emerging from Z0 that have k hyperbolic limit cycles bifurcating from the nondegenerate σ-center of Z0 (the same holds for k=∞). Moreover, we also exhibit families of piecewise smooth vector fields of codimension k emerging from Z0. As a consequence we prove that Z0 has infinite codimension. © 2013 Elsevier Masson SAS.10213647Arrowsmith, D.K., Place, C.M., (1990) An Introduction to Dynamical Systems, , Cambridge University PressBuzzi, C.A., de Carvalho, T., Teixeira, M.A., On three-parameter families of Filippov systems - the fold-saddle singularity (2012) Int. J. Bifurc. Chaos, 22 (12), p. 18. , 1250291Buzzi, C.A., de Carvalho, T., Teixeira, M.A., On 3-parameter families of piecewise smooth vector fields in the plane (2012) SIAM J. Appl. Dyn. Syst., 11 (4), pp. 1402-1424Caubergh, M., (2004), Limit cycles near centers, Thesis Limburgh University, DiepenbeckCaubergh, M., Dumortier, F., Hopf-Takens bifurcations and centers (2004) J. Differ. Equ., 202, pp. 1-31Chow, S.N., Hale, J.K., (1982) Methods of Bifurcation Theory, , Springer-VerlagCeragioli, F., (1999) Discontinuous ordinary differential equations and stabilization, , http://calvino.polito.it/~ceragioli, PhD thesis, University of Firenze, Italy, Electronically available atCortĂ©s, J., Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability, , arxiv:0901.3583, posted inDumortier, F., Singularities of Vector Fields (1978) Monografias de Matematica, 32. , Instituto de Matematica Pura e Aplicada, Rio de JaneiroEkeland, I., Discontinuits de champs hamiltoniens et existence de solutions optimales en calcul des variations (1977) Publ. Math. Inst. Hautes Études Sci., 47, pp. 5-32. , (in French)Filippov, A.F., Differential Equations with Discontinuous Right-Hand Sides (1988) Math. Appl., Sov. Ser., , Kluwer Academic Publishers, DordrechtGavrilov, L., Horozov, E., Limit cycles of perturbations of quadratic Hamiltonian vector fields (1993) J. Math. Pures Appl., 72 (2), pp. 213-238Golubitski, M., Guillemin, V., (1973) Stable Mappings and Their Singularities, , Springer-VerlagGuardia, M., Seara, T.M., Teixeira, M.A., Generic bifurcations of low codimension of planar Filippov systems (2011) J. Differ. Equ., 250, pp. 1967-2023Kuznetsov, Y.A., Rinaldi, S., Gragnani, A., One-parameter bifurcations in planar Filippov systems (2003) Int. J. Bifurc. Chaos, 13, pp. 2157-2188Takens, F., Unfoldings of certain singularities of vector fields generalised Hopf bifurcations (1973) J. Differ. Equ., 14 (3), pp. 476-493Teixeira, M.A., Perturbation theory for non-smooth systems, Meyers: encyclopedia of complexity and systems (2008) Science, 15
    corecore