2,337 research outputs found

    The transmission or scattering of elastic waves by an inhomogeneity of simple geometry: A comparison of theories

    Get PDF
    The extended method of equivalent inclusion developed is applied to study the specific wave problems of the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and of the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. The eigenstrains are expanded as a geometric series and the method of integration for the inhomogeneous Helmholtz operator given by Fu and Mura is adopted. The results obtained by using a limited number of terms in the eigenstrain expansion are compared with exact solutions for the layer problem and for a perfect sphere. Two parameters are singled out for this comparison: the ratio of elastic moduli, and the ratio of the mass densities. General trends for three different situations are shown

    Fundamentals of microcrack nucleation mechanics

    Get PDF
    A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities

    Modeling The Post-Burn-In Abnormal Base Current In Algaas/Gaas Heterojunction Bipolar Transistors

    Get PDF
    The base current of AlGaAs/GaAs heterojunction bipolar transistor subjected to a long burn-in test often exhibits an abnormal characteristic with an ideality factor of about 3, rather than a normal ideality factor between 1 and 2, in the midvoltage range, We develope an analytical model to investigate the physical mechanisms underlying such a characteristic. Consistent with the finding of an experimental work reported recently, our model calculations show that the recombination current in the base has an ideality factor of about 3 in the midvoltage range and that such a current is responsible for the observed abnormal base current in heterojunction bipolar transistor after a long burn-in test. Post-burn-in data measured from two different heterojunction bipolar transistors are also included in support of the model

    The first products made in space: Monodisperse latex particles

    Get PDF
    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles

    Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2

    Full text link
    The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides because the Co sits on a triangular lattice and its valence can be tuned over a wide range by varying the Na concentration x. Up to now detailed modeling of the rich phenomenology (which ranges from unconventional superconductivity to enhanced thermopower) has been hampered by the difficulty of controlling pure phases. We discovered that certain Na concentrations are specially stable and are associated with superlattice ordering of the Na clusters. This leads naturally to a picture of co-existence of localized spins and itinerant charge carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our picture brings coherence to a variety of measurements ranging from NMR to optical to thermal transport. Our results also allow us to take the first step towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We suggest the local moments may form a quantum spin liquid state and we propose experimental test of our hypothesis.Comment: 16 pages, 5 figure

    Searching for Stable Na-ordered Phases in Single Crystal Samples of gamma-NaxCoO2

    Full text link
    We report on the preparation and characterization of single crystal gamma phase NaxCoO2 with 0.25 < x < 0.84 using a non-aqueous electrochemical chronoamperemetry technique. By carefully mapping the overpotential versus x (for x < 0.84), we find six distinct stable phases with Na levels corresponding to x ~ 0.75, 0.71, 0.50, 0.43, 0.33 and 0.25. The composition with x ~0.55 appears to have a critical Na concentration which separates samples with different magnetic behavior as well as different Na ion diffusion mechanisms. Chemical analysis of an aged crystal reveals different Na ion diffusion mechanisms above and below x_c ~ 0.53, where the diffusion process above x_c has a diffusion coefficient about five times larger than that below x_c. The series of crystals were studied with X-ray diffraction, susceptibility, and transport measurements. The crystal with x = 0.5 shows a weak ferromagnetic transition below T=27 K in addition to the usual transitions at T = 51 K and 88 K. The resistivity of the Curie-Weiss metallic Na0.71CoO2 composition has a very low residual resistivity, which attests to the high homogeneity of the crystals prepared by this improved electrochemical method. Our results on the various stable crystal compositions point to the importance of Na ion ordering across the phase diagram.Comment: 9 pages, 9 figure
    • …
    corecore