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Modeling the post-burn-in abnormal base current in AlGaAs/GaAs
heterojunction bipolar transistors

S. Sheu and J. J. Liou
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Device Technology Division, Wright Laboratory, Wright-Patterson AFB, Ohio 45433
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Electromagnetic and Reliability Directorate, Rome Laboratory, Griffiss AFB, New York 13422

~Received 24 July 1995; accepted for publication 24 January 1996!

The base current of AlGaAs/GaAs heterojunction bipolar transistor subjected to a long burn-in test
often exhibits an abnormal characteristic with an ideality factor of about 3, rather than a normal
ideality factor between 1 and 2, in the midvoltage range. We develope an analytical model to
investigate the physical mechanisms underlying such a characteristic. Consistent with the finding of
an experimental work reported recently, our model calculations show that the recombination current
in the base has an ideality factor of about 3 in the midvoltage range and that such a current is
responsible for the observed abnormal base current in heterojunction bipolar transistor after a long
burn-in test. Post-burn-in data measured from two different heterojunction bipolar transistors are
also included in support of the model. ©1996 American Institute of Physics.
@S0021-8979~96!07609-7#

I. INTRODUCTION

Burn-in tests carried out in a thermal and/or electrical
stress condition are useful in determining the long-term per-
formance of AlGaAs/GaAs heterojunction bipolar transistors
~HBTs!.1–3 Experimental results often show that the burn-in
test increases considerably the base currentI B but does not
alter notably the collector currentI C . Furthermore, an abnor-
mal base current with an ideality factorn'3 in the midvolt-
age range is often observed in the Gummel plot of a HBT
subjected to a relatively long-hour burn-in test.1–3 An at-
tempt has been made earlier to model the HBT post-burn-in
behavior.4 The analysis was based on the theory that the
defects at the base surface may migrate to the heterointerface
during the high thermal/electrical stress condition~i.e.,
recombination/thermal enhanced defect diffusion5!. While
such a model can successfully describeI B and I C in HBTs
subjected to a relative short burn-in test~I B andI C after 144
h stress shown in Fig. 1!, it fails to predict I B with n'3
characteristics observed in the HBT after a long-hour stress
test, as evidenced by the results ofI B measured after 300 h
stress given in Fig. 1. Sugaharaet al.3 have suggested that
such an abnormal current can be attributed to a significant
increase in the number of defects in the strained base~i.e.,
stress-induced defects! during the long stress hours. Also,
they have demonstrated that the post-burn-inI B can be
greatly reduced if the base lattice strain is relaxed.

This article presents a comprehensive theoretical study
on the abnormal base current in the post-burn-in HBT. Based
on the Shockley–Read–Hall~SRH! recombination statistics,
a model for the recombination current in the base region is
developed. Our model calculations show that such a current
has an ideality factor of about 3 in the midvoltage range and
thus is responsible for the observed abnormal base current in
HBT after a long burn-in test. With the aid of the model and
measurement data, physical mechanisms underlying the ob-

served abnormal base current in the post-burn-in HBT are
also discussed.

II. MODEL DEVELOPMENT

A. Pre-burn-in HBT

We focus on the base current of a mesa-etchedN/p1/n
HBT. There are two major components for the base current
of pre-burn-in HBT,

I B5IBL1IBN , ~1!

whereIBL is the base leakage current andI BN is the normal
base current. For the bias condition of applied base-collector
voltage VCB50 and base-emitter voltageVBE.0 ~i.e.,
forward-active mode!, the base leakage current is originated
from the leakage of electron from the base to emitter through
the emitter-base periphery and is the dominate current com-
ponent forI B at relatively smallVBE.

6 This current is given
by6

IBL5PEJBL8 @12exp~2VBEFL /VT!#, ~2!

wherePE is the emitter perimeter length,JBL8 is the fully
activated~i.e., VBE@VT! base leakage current density, and
FL is an empirical parameter determining the shape of the
base leakage current.

The normal base current in general consists of:

~1! the recombination currentISCREin the emitter side of the
heterojunction space-charge region;

~2! the recombination currentISCRB in the base side of the
heterojunction space-charge region;

~3! the surface recombination currentIRS at the emitter side
walls and extrinsic base surface;

~4! the recombination currentIQNB in the QNB; and
~5! the injection currentIRE from the base into emitter.
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The details of these current components can be been found in
the literature.7 For pre-burn-in HBTs,IQNB is negligible be-
cause the number of defects in the QNB is small and the base
is very thin. In addition,ISCRB is neglected due to the fact
that the majority of the space-charge region~SCR! resides in
the emitter because of the very high base doping density.
Thus,

IBN5ISCRE1IRS1IRE. ~3!

The ideality factor of this current ranging from 1 to 2.

B. Post-burn-in HBT

After a long burn-in test, the number of defects in the
base will be increased significantly due to the strained lattice
during the stress test.3 As a result, substantial electron–hole
recombination occurs in both the base side of the SCR and
the QNB, and the conventional thin QNB and thin SCR ap-
proximations are no longer valid. Thus, for a HBT after a
long burn-in test,

IBN5IBASE1ISCRE1IRS1IRE, ~4!

whereIBASE5ISCRB1IQNB, and

IBASE5AqE
0

X2
USRH~x!dx1AqE

X2

XB
USRH~x!dx. ~5!

HereA is the emitter area,x50 andX2 are the boundaries of
base-side SCR,x5X2 and XB are the boundaries of the
QNB, andUSRH is the total SRH recombination rate sum-
ming the recombination rates at each trapping stateETi ~i
51,2,...,N, N is the total number of trapping states!,

USRH5(
i51

N

Ui
SRH, ~6!

and7

Ui
SRH5~pn2ni

2!~11G!~NTis iv th!$p1n12ni

3cosh@~ETi2Ei !/kT#%21. ~7!

p andn are hole and electron concentrations in the QNB,ni
is the intrinsic free-carrier concentration,G is the trap-
assisted tunneling factor,NTi is the trapping density atETi ,
si ~'10214 cm22! is the capture cross section atNTi , v th
~'107 cm/s! is the electron thermal velocity, andEi is the
intrinsic Fermi energy. The trap-assisted tunneling is impor-
tant for the high-field region, such as the emitter-base SCR,
where electrons can tunnel through the energy band via traps
and subsequently recombine with holes.8 In a low-field re-
gion, such as the QNB,G approaches zero. This factor is
given by8

G5S DE

kT D E
0

1

expS uDE

kT
2K8u1.5Ddu. ~8!

Here DE is the energy between the conduction-band edge
and the trapping state energy since electrons in these ener-
gies are tunneling possible, andK8 is a parameter inversely
proportional to the local electric fieldj,

K85~4/3!~2m*DE3!0.5/~q\j!. ~9!

m* is the effective electron mass and\ is the reduced Planck
constant. Whenj is large,K8 is small, andG becomes large.

For the QNB, the minority-carrier lifetimetB is related
to the electron concentration as9

tB5~n2n0!/U
SRH5Dn/USRH, ~10!

wheren0 is the equilibrium electron concentration andDn is
the excess electron concentration. For a base with an arbi-
trary length,7

Dn5Dn~X2!sinh@~XB2x!/Ln#/sinh@~XB2X2!/Ln#. ~11!

Here Ln5(DntB)
0.5 is the electron diffusion length in the

QNB and, using the thermionic and tunneling mechanisms at
heterointerface and Boltzmann statistics in the QNB,10

Dn~X2!5qvngnNE exp~2VB1 /VT!/z, ~12!

z5qDn /~XB2X21Dn /vs!1qvngn

3exp@~VB22DEC /q!/VT#, ~13!

wherevn is the electron thermal velocity,gn is the electron
tunneling coefficient,NE is the emitter doping concentration,
andVB1 andVB2 are the barrier potentials on the emitter and
base sides of the junction, respectively. SincetB andDn are
related to each other, a numerical procedure is needed to
calculateUSRH, and thusIQNB, iteratively, provided the pa-
rameters associated with the SRH process~i.e., ETi , NTi ,
andN! are specified.

For the SCR,n, p, andj distributions in the base side of
SCR needed in Eqs.~7! and ~8! are given by

n~x!5n~X2!exp@2Vi~x!/VT#, ~14!

p~x!5p~X2!exp@Vi~x!/VT#, ~15!

j~x!52~qNB /eB!~X22x! ~16!

FIG. 1. Base and collector current characteristics of a post-burn-in~sub-
jected to 240 °C temperature and 104 A/cm2 current density stress! AlGaAs/
GaAs HBT calculated from a previously developed model Ref. 4 and ob-
tained from measurements. The model of Ref. 4 gives an accurate prediction
for the HBT behavior after a relatively short stress test~i.e., 144 h!, but fails
to describe the base current~i.e., with an ideality factor of about 3 between
VBE50.3 and 1.2 V! of the HBT subjected to a long stress test~i.e., 300 h!.
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whereVi is the electrostatic potential@i.e.,Vi(X2)50 is cho-
sen as the reference potential#, NB is the base doping con-
centration, andeB is the dielectric permittivity in base. The
position-dependentVi in the base side of SCR can be ex-
pressed as7

Vi~x!520.5~qNB /eB!~X22x!2. ~17!

As is shown later,IBASE has an ideality factor of about 3
in the midvoltage range and thus is the current component
contributing to the abnormal base current observed in the
post-burn-in HBT.

III. RESULTS AND DISCUSSIONS

We first investigate the effects ofETi andN on the re-
combination current in the base. The device considered has a
typical makeup of 531017 cm23 emitter doping concentra-
tion, 0.15mm emitter layer thickness, 1019 cm23 base doping
concentration, and 0.1mm base layer thickness. Also, the
conduction-band edgeEC has been chosen as the reference
for ETi ~i.e.,ETi50 if located atEC!. Three differentETi of
0.7, 1.1, and 1.4 eV will be considered to represent various

trapping state locations in the band gap~i.e., deep-,
intermediate-, and shallow-level trapping states!. Further-
more, onlyETi belowEi are considered because only these
types ofETi are important to trap-assisted tunneling in the
base side of the SCR.8 As is shown later, this is a major
mechanism contributing to the abnormal base current.

Figure 2 showsIBASE calculated from the model using
fixed NTi51019 cm23 and a single trap withETi50.7 eV, a
single trap with ETi51.4 eV, and multiple traps with
ETi50.7, 1.1, and 1.4 eV~i.e., N53!. The results suggest
that IBASE is relatively insensitive toETi , but depends more
on the number of trapping stateN, particularly at smallVBE.
Furthermore, all three currents exhibit ann'3 characteristic.

Intuitively, one expectsIBASE increases with increasing
ETi and increasingN becauseUSRH is inversely and directly
proportional cosh(ETi/kT) andN @see Eqs.~6! and ~7!#, re-
spectively. This is true for smallVBE ~i.e., VBE,0.8 V!,
where the electric field in the SCR is high, and recombina-
tion via trap-assisted tunneling in the SCR is the dominant
process. For highVBE, however, the electric field in the SCR
is small, and the SRH recombination in the QNB is more

FIG. 2. Recombination current in the base vsVBE calculated from the model
for three different cases ofNTi andN.

FIG. 3. Recombination current in the base calculated with and without the
trap-assisted tunneling mechanism.

FIG. 4. SRH recombination rates vs base position calculated for three dif-
ferentVBE .

FIG. 5. Recombination current in the base vsVBE calculated from the model
for three differentNTi .
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significant. SinceUSRH in the QNB is a function of the elec-
tron concentration, an increase inETi and increase inN will
tend to increaseUSRH, but such a change will also tend to
decreasetB and therefore decrease the electron concentration
andUSRH in the QNB. This compensating mechanism leads
to a less significant effect ofETi andN on IBASE, as ob-
served in the region ofVBE.0.8 V in Fig. 2. To further
demonstrate this, we show in Fig. 3IBASE vs VBE calculated
with and without trap-assisted tunneling. It can be seen that
the current component resulted from trap-assisted tunneling
is negligible ifVBE is greater than 0.8 V. For this bias region,
recombination current in the QNB is the dominant current,
andIBASE is less insensitive toNTi andN, as observed in Fig.
2. Also note that the abnormality ofn'3 is more evident in
IBASE with trap-assisted tunneling.

The dependence ofUSRH(x) onVBE is illustrated in Fig.
4. A logarithmic scale has been used for thex axis to illus-
trate the details ofUSRH(x) in the base side of SCR~far
left-hand side of the figure! due to trap-assisted tunneling.
For relatively smallVBE ~i.e., VBE50.4 and 0.8 V!, the re-
combination rate in the SCR decreases with increasingVBE

because of a smaller electric field and thus a smaller trap-
assisted tunneling factor in the region. The trend is reversed
if VBE is further increased~i.e.,VBE51.2 V!, however, due to
the fact that the SCR is vanishing, andUSRH becomes the
QNB recombination rate.

Figure 5 shows the effect ofNTi on the recombination
current in the base. Here, we have arbitrarily chosen a single
trap with ETi50.7 eV in calculations. Clearly, the value of
NTi affects IBASE significantly, andNTi will be the main
parameter in fitting the model calculations with experimental
data.

Figure 6 shows the total base currents of pre- and post-
burn-in HBT-1 ~device makeup and its leakage current pa-
rameters are given in Table I! calculated from the model and
obtained from measurements. The plateaulike current for
VBE,0.8 V in the pre-burn-in HBT is the base leakage cur-
rent. For the post-stress HBT the current behavior for
VBE.0.2 V is changed to that ofn'3. This is due to the fact
that, in addition to the base leakage current, there is a large
IBASE in the post-burn-in HBT.NTi58.7531018 cm23 has
been used to fit the model to measured data, suggesting the
stress-induced defect density in such a HBT is 8.7531018

cm23. A single trap withETi50.7 eV has also been used.
Figure 7 shows the total base currents of pre- and post-

burn-in HBT-2 ~see Table I! calculated from the model and
obtained from measurements.3 For this device, we found that
the burn-in test resulted inNTi5231018 cm23 in the base.
This is smaller thanNTi in HBT-1, due perhaps to the fact
that HBT-2 is subjected to a less severe burn-in test~200 °C
and 73103 A/cm2! than HBT-1~240 °C and 104 A/cm2!.

IV. CONCLUSIONS

A model has been developed to investigate the physical
mechanisms underlying the abnormal base current~i.e., with
an ideality factor of about 3! observed in the post-burn-in
AlGaAs/GaAs heterojunction bipolar transistor~HBT!. Our
study confirms the finding of recent experimental work that
such a current resulted from the significant electron–hole
recombination via stress-induced defect centers in the base of
the HBT. Furthermore, it has been shown that the trap-
assisted tunneling is an important mechanism for recombina-
tion in the space-charge region when the bias voltage is rela-
tively low. The model calculations compare favorably with
data measured from two different HBTs.

FIG. 6. Pre- and post-burn-in base currents of HBT-1 calculated from the
model and obtained from measurements.

FIG. 7. Pre- and post-burn-in base currents of HBT-2 calculated from the
model and obtained from measurements~Ref. 3!.

TABLE I. HBT structures and leakage current parameters.

Parameters HBT-1 HBT-2

Emitter doping~cm23! 531017 531017

Emitter thickness~mm! 0.17 0.18
Emitter area~mm2! 100 30
Base doping~cm23! 131019 131019

Base thickness~mm! 0.1 0.14
JBL8 ~A/cm! 131025 1.3331026

FL 0.005 0.005
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