1,696 research outputs found
The Diffusion of Humans and Cultures in the Course of the Spread of Farming
The most profound change in the relationship between humans and their
environment was the introduction of agriculture and pastoralism. [....] For an
understanding of the expansion process, it appears appropriate to apply a
diffusive model. Broadly, these numerical modeling approaches can be catego-
rized in correlative, continuous and discrete. Common to all approaches is the
comparison to collections of radiocarbon data that show the apparent wave of
advance of the transition to farming. However, these data sets differ in entry
density and data quality. Often they disregard local and regional specifics and
research gaps, or dating uncertainties. Thus, most of these data bases may only
be used on a very general, broad scale. One of the pitfalls of using
irregularly spaced or irregularly documented radiocarbon data becomes evident
from the map generated by Fort (this volume, Chapter 16): while the general
east-west and south-north trends become evident, some areas appear as having
undergone anomalously early transitions to farming. This may be due to faulty
entries into the data base or regional problems with radiocarbon dating, if not
unnoticed or undocumented laboratory mistakes.Comment: 20 pages, 5 figures, submitted to Diffusive Spreading in Nature,
Technology and Society, edited by Armin Bunde, J\"urgen Caro, J\"org
K\"arger, Gero Vogl, Chapter 1
Simulation of guiding of multiply charged projectiles through insulating capillaries
Recent experiments have demonstrated that highly charged ions can be guided
through insulating nanocapillaries along the direction of the capillary axis
for a surprisingly wide range of injection angles. Even more surprisingly, the
transmitted particles remain predominantly in their initial charge state, thus
opening the pathway to the construction of novel ion-optical elements without
electric feedthroughs. We present a theoretical treatment of this
self-organized guiding process. We develop a classical trajectory transport
theory that relates the microscopic charge-up with macroscopic material
properties. Transmission coefficients, angular spread of transmitted particles,
and discharge characteristics of the target are investigated. Partial agreement
with experiment is found
Raman imaging and electronic properties of graphene
Graphite is a well-studied material with known electronic and optical
properties. Graphene, on the other hand, which is just one layer of carbon
atoms arranged in a hexagonal lattice, has been studied theoretically for quite
some time but has only recently become accessible for experiments. Here we
demonstrate how single- and multi-layer graphene can be unambiguously
identified using Raman scattering. Furthermore, we use a scanning Raman set-up
to image few-layer graphene flakes of various heights. In transport experiments
we measure weak localization and conductance fluctuations in a graphene flake
of about 7 monolayer thickness. We obtain a phase-coherence length of about 2
m at a temperature of 2 K. Furthermore we investigate the conductivity
through single-layer graphene flakes and the tuning of electron and hole
densities via a back gate
Replication of Known Dental Characteristics in Porcine Skin: Emerging Technologies for the Imaging Specialist
This study demonstrates that it is sometimes possible to replicate patterns of human teeth in pig skin and determine scientifically that a given injury pattern (bite mark) correlates with the dentitions of a very small proportion of a population dataset, e.g., 5 percent or even 1 percent. The authors recommend building on the template of this research with a sufficiently large database of samples that reflects the diverse world population. They also envision the development of a sophisticated imaging software application that enables forensic examiners to insert parameters for measurement, as well as additional methods of applying force to produce bite marks for research. The authors further advise that this project is applied science for injury pattern analysis and is only foundational research that should not be cited in testimony and judicial procedures. It supplements but does not contradict current guidelines of the American Board of Forensic Odontology regarding bite mark analysis and comparisons. A much larger population database must be developed. The project’s methodology is described in detail, accompanied by 11 tables and 41 figures
Transport through open quantum dots: making semiclassics quantitative
We investigate electron transport through clean open quantum dots (quantum
billiards). We present a semiclassical theory that allows to accurately
reproduce quantum transport calculations. Quantitative agreement is reached for
individual energy and magnetic field dependent elements of the scattering
matrix. Two key ingredients are essential: (i) inclusion of pseudo-paths which
have the topology of linked classical paths resulting from diffraction in
addition to classical paths and (ii) a high-level approximation to diffractive
scattering. Within this framework of the pseudo-path semiclassical
approximation (PSCA), typical shortcomings of semiclassical theories such as
violation of the anti-correlation between reflection and transmission and the
overestimation of conductance fluctuations are overcome. Beyond its predictive
capabilities the PSCA provides deeper insights into the quantum-to-classical
crossover.Comment: 20 pages, 19 figure
Palladium-Catalyzed Allylic Substitution at Four-Membered-Ring Systems: Formation of η<sup>1</sup>-Allyl Complexes and Electrocyclic Ring Opening
Caught in the act: A series of unique η1-allyl palladium complexes of four-membered cyclic systems bearing β-hydrogens were prepared (see structure). Their unusual structure, reactivity, and unprecedented propensity for undergoing pericyclic reactions were uncovered
Carbohydrate and protein contents of grain dusts in relation to dust morphology.
Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust
Negative length orbits in normal-superconductor billiard systems
The Path-Length Spectra of mesoscopic systems including diffractive
scatterers and connected to superconductor is studied theoretically. We show
that the spectra differs fundamentally from that of normal systems due to the
presence of Andreev reflection. It is shown that negative path-lengths should
arise in the spectra as opposed to normal system. To highlight this effect we
carried out both quantum mechanical and semiclassical calculations for the
simplest possible diffractive scatterer. The most pronounced peaks in the
Path-Length Spectra of the reflection amplitude are identified by the routes
that the electron and/or hole travels.Comment: 4 pages, 4 figures include
An amphitropic cAMP-binding protein in yeast mitochondria
ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)
- …