4,229 research outputs found

    An Autonomous Robotic System for Mapping Abandoned Mines

    Get PDF
    We present the software architecture of a robotic system for mapping abandoned mines. The software is capable of acquiring consistent 2D maps of large mines with many cycles, represented as Markov random fields. 3D C-space maps are acquired from local 3D range scans, which are used to identify navigable paths using A* search. Our system has been deployed in three abandoned mines, two of which inaccessible to people, where it has acquired maps of unprecedented detail and accuracy

    Easy on that trigger dad: a study of long term family photo retrieval

    Get PDF
    We examine the effects of new technologies for digital photography on people's longer term storage and access to collections of personal photos. We report an empirical study of parents' ability to retrieve photos related to salient family events from more than a year ago. Performance was relatively poor with people failing to find almost 40% of pictures. We analyze participants' organizational and access strategies to identify reasons for this poor performance. Possible reasons for retrieval failure include: storing too many pictures, rudimentary organization, use of multiple storage systems, failure to maintain collections and participants' false beliefs about their ability to access photos. We conclude by exploring the technical and theoretical implications of these findings

    Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE Revisited

    Full text link
    We derive expansions of the resolvent Rn(x;y;t)=(Qn(x;t)Pn(y;t)-Qn(y;t)Pn(x;t))/(x-y) of the Hermite kernel Kn at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n expansion of Qn(x;t) and Pn(x;t). Using these large n expansions, we give another proof of the derivation of an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn. We conclude with a brief discussion on the derivation of the probability distribution function of the corresponding largest eigenvalue in the Gaussian Orthogonal Ensemble (GOEn) and Gaussian Symplectic Ensembles (GSEn)

    Relative entropy as a measure of inhomogeneity in general relativity

    Full text link
    We introduce the notion of relative volume entropy for two spacetimes with preferred compact spacelike foliations. This is accomplished by applying the notion of Kullback-Leibler divergence to the volume elements induced on spacelike slices. The resulting quantity gives a lower bound on the number of bits which are necessary to describe one metric given the other. For illustration, we study some examples, in particular gravitational waves, and conclude that the relative volume entropy is a suitable device for quantitative comparison of the inhomogeneity of two spacetimes.Comment: 15 pages, 7 figure

    The Wahlquist metric cannot describe an isolated rotating body

    Full text link
    It is proven that the Wahlquist perfect fluid space-time cannot be smoothly joined to an exterior asymptotically flat vacuum region. The proof uses a power series expansion in the angular velocity, to a precision of the second order. In this approximation, the Wahlquist metric is a special case of the rotating Whittaker space-time. The exterior vacuum domain is treated in a like manner. We compute the conditions of matching at the possible boundary surface in both the interior and the vacuum domain. The conditions for matching the induced metrics and the extrinsic curvatures are mutually contradictory.Comment: 13 pages, 0 figure

    Automatic wheeze detection based on auditory modelling

    Get PDF
    Automatic wheeze detection has several potential benefits compared with reliance on human auscultation: it is experience independent, an automated historical record can easily be kept, and it allows quantification of wheeze severity. Previous attempts to detect wheezes automatically have had partial success but have not been reliable enough to become widely accepted as a useful tool. In this paper an improved algorithm for automatic wheeze detection based on auditory modelling is developed, called the frequency- and duration-dependent threshold algorithm. The mean frequency and duration of each wheeze component are obtained automatically. The detected wheezes are marked on a spectrogram. In the new algorithm, the concept of a frequency- and duration-dependent threshold for wheeze detection is introduced. Another departure from previous work is that the threshold is based not on global power but on power corresponding to a particular frequency range. The algorithm has been tested on 36 subjects, 11 of whom exhibited characteristics of wheeze. The results show a marked improvement in the accuracy of wheeze detection when compared with previous algorithms

    Pressure as a Source of Gravity

    Full text link
    The active mass density in Einstein's theory of gravitation in the analog of Poisson's equation in a local inertial system is proportional to ρ+3p/c2\rho+3p/c^2. Here ρ\rho is the density of energy and pp its pressure for a perfect fluid. By using exact solutions of Einstein's field equations in the static case we study whether the pressure term contributes towards the mass

    General Relativity As an Aether Theory

    Full text link
    Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shall use a combination of Lorentz's and Kelvin's conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvin's aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann

    Josephson Currents in Quantum Hall Devices

    Full text link
    We consider a simple model for an SNS Josephson junction in which the "normal metal" is a section of a filling-factor ν=2\nu=2 integer quantum-Hall edge. We provide analytic expressions for the current/phase relations to all orders in the coupling between the superconductor and the quantum Hall edge modes, and for all temperatures. Our conclusions are consistent with the earlier perturbative study by Ma and Zyuzin [Europhysics Letters {\bf 21} 941-945 (1993)]: The Josephson current is independent of the distance between the superconducting leads, and the upper bound on the maximum Josephson current is inversely proportional to the perimeter of the Hall device.Comment: Revtex4. 22 pages 9 figures. Replaced version has minor typos fixed and one added referenc
    corecore