3,070 research outputs found

    Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP.

    Get PDF
    Important insights into nuclear function would arise if gene loci physically interacting with particular subnuclear domains could be readily identified. Immunofluorescence microscopy combined with fluorescence in situ hybridization (immuno-FISH), the method that would typically be used in such a study, is limited by spatial resolution and requires prior assumptions for selecting genes to probe. Our new technique, immuno-TRAP, overcomes these limitations. Using promyelocytic leukemia nuclear bodies (PML NBs) as a model, we used immuno-TRAP to determine if specific genes localize within molecular dimensions with these bodies. Although we confirmed a TP53 gene-PML NB association, immuno-TRAP allowed us to uncover novel locus-PML NB associations, including the ABCA7 and TFF1 loci and, most surprisingly, the PML locus itself. These associations were cell type specific and reflected the cell's physiological state. Combined with microarrays or deep sequencing, immuno-TRAP provides powerful opportunities for identifying gene locus associations with potentially any nuclear subcompartment

    Possibilities of Rural Zoning in South Dakota: A Study in Corson County

    Get PDF

    Developing a Comprehensive Leadership Program for Extension County Directors

    Get PDF
    This article provides an overview of the development and components of LEAD95, UT Extension’s comprehensive leadership program for county-level leaders. The program was designed using results from a Delphi study, which identified critical skills and resources for new county directors to be successful. The program consists of face-to-face workshops, mentoring, a multi-rater assessment, online learning opportunities, and an online resource toolkit. Expected outcomes include increased competency, increased job satisfaction, and more consistent leadership and direction among county-level leaders in the UT Extension system

    Transport and Spectra in the Half-filled Hubbard Model: A Dynamical Mean Field Study

    Full text link
    We study the issues of scaling and universality in spectral and transport properties of the infinite dimensional particle--hole symmetric (half-filled) Hubbard model within dynamical mean field theory. One of the simplest and extensively used impurity solvers, namely the iterated perturbation theory approach is reformulated to avoid problems such as analytic continuation of Matsubara frequency quantities or calculating multi-dimensional integrals, while taking full account of the very sharp structures in the Green's functions that arise close to the Mott transitions and in the Mott insulator regime. We demonstrate its viability for the half-filled Hubbard model. Previous known results are reproduced within the present approach. The universal behavior of the spectral functions in the Fermi liquid regime is emphasized, and adiabatic continuity to the non-interacting limit is demonstrated. The dc resistivity in the metallic regime is known to be a non-monotonic function of temperature with a `coherence peak'. This feature is shown to be a universal feature occurring at a temperature roughly equal to the low energy scale of the system. A comparison to pressure dependent dc resistivity experiments on Selenium doped NiS2_2 yields qualitatively good agreement. Resistivity hysteresis across the Mott transition is shown to be described qualitatively within the present framework. A direct comparison of the thermal hysteresis observed in V2_2O3_3 with our theoretical results yields a value of the hopping integral, which we find to be in the range estimated through first-principle methods. Finally, a systematic study of optical conductivity is carried out and the changes in absorption as a result of varying interaction strength and temperature are identified.Comment: 19 pages, 12 figure

    Phenotypically determined resistance of Neisseria gonorrhoeae to normal human serum: environmental factors in subcutaneous chambers in guinea pigs

    Get PDF
    Some gonococci obtained from human urethral exudate or from subcutaneously implanted chambers in guinea pigs show a resistance to killing by human serum which is lost on subculture in vitro after a few generations. The environmental factors which may influence the phenotypic expression of resistance to serum killing were investigated in guinea pig chambers and in chamber fluid in vitro. The redox potential in chambers before and after infection was lower than that of heart blood but conditions were not anaerobic; H2O2 increased the redox potential but did not decrease gonococcal serum resistance. The chambers were slightly alkaline before and after infection. When the concentration of glucose (depleted in infected chambers by the abundant polymorphonuclear cells) was restored to excess, the serum resistance of the gonococci was unaffected. Concentrations of free amino acids in chambers changed little during infection. Gonococci adapted to growth in chambers and subsequently rendered serum-sensitive by growing once on agar reverted to serum-resistance after 0.5 to 1 h incubation in chamber fluid in vitro at 37°C but not at 25°C or 4°C. After 16 to 24 h growth at 37°C, resistance was again lost. The reversion to serum resistance did not occur in a complex laboratory medium. Examination of the chamber fluid after growth of gonococci in vitro showed depletion of lactate, glutamine and proline

    County Land Management in Northwestern South Dakota

    Get PDF

    Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model

    Full text link
    The ground states of the two-dimensional repulsive Hubbard model are studied within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge properties are determined by systematic, large-scale, exact numerical calculations, and quantified as a function of electron doping hh. In the solution of the self-consistent UHF equations, multiple initial configurations and simulated annealing are used to facilitate convergence to the global minimum. New approaches are employed to minimize finite-size effects in order to reach the thermodynamic limit. At low to moderate interacting strengths and low doping, the UHF ground state is a linear spin-density wave (l-SDW), with antiferromagnetic order and a modulating wave. The wavelength of the modulating wave is 2/h2/h. Corresponding charge order exists but is substantially weaker than the spin order, hence holes are mobile. As the interaction is increased, the l-SDW states evolves into several different phases, with the holes eventually becoming localized. A simple pairing model is presented with analytic calculations for low interaction strength and small doping, to help understand the numerical results and provide a physical picture for the properties of the SDW ground state. By comparison with recent many-body calculations, it is shown that, for intermediate interactions, the UHF solution provides a good description of the magnetic correlations in the true ground state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table

    Effect of heat treatment on mechanical dissipation in Ta2_2O5_5 coatings

    Get PDF
    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11\,K and 300\,K. We find the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200\,K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.Comment: accepted Classical and Quantum Gravity 201
    • …
    corecore