2,606 research outputs found

    Soliton-dynamical approach to a noisy Ginzburg-Landau model

    Full text link
    We present a dynamical description and analysis of non-equilibrium transitions in the noisy Ginzburg-Landau equation based on a canonical phase space formulation. The transition pathways are characterized by nucleation and subsequent propagation of domain walls or solitons. We also evaluate the Arrhenius factor in terms of an associated action and find good agreement with recent numerical optimization studies.Comment: 4 pages (revtex4), 3 figures (eps

    NVU dynamics. III. Simulating molecules at constant potential energy

    Get PDF
    This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [Ingebrigtsen et al., J. Chem. Phys. 135, 104101 (2011); ibid, 104102 (2011)], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnstrom OTP, and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nose-Hoover NVT dynamics. Since Nose-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems.Comment: 14 pages, 12 figure

    On the work distribution for the adiabatic compression of a dilute classical gas

    Get PDF
    We consider the adiabatic and quasi-static compression of a dilute classical gas, confined in a piston and initially equilibrated with a heat bath. We find that the work performed during this process is described statistically by a gamma distribution. We use this result to show that the model satisfies the non-equilibrium work and fluctuation theorems, but not the flucutation-dissipation relation. We discuss the rare but dominant realizations that contribute most to the exponential average of the work, and relate our results to potentially universal work distributions.Comment: 4 page

    Spectral dependence of purely-Kerr driven filamentation in air and argon

    Full text link
    Based on numerical simulations, we show that higher-order nonlinear indices (up to n8n_8 and n10n_{10}, respectively) of air and argon have a dominant contribution to both focusing and defocusing in the self-guiding of ultrashort laser pulses over most of the spectrum. Plasma generation and filamentation are therefore decoupled. As a consequence, ultraviolet wavelength may not be the optimal wavelengths for applications requiring to maximize ionization.Comment: 14 pages, 4 figures (14 panels

    Microcanonical quantum fluctuation theorems

    Full text link
    Previously derived expressions for the characteristic function of work performed on a quantum system by a classical external force are generalized to arbitrary initial states of the considered system and to Hamiltonians with degenerate spectra. In the particular case of microcanonical initial states explicit expressions for the characteristic function and the corresponding probability density of work are formulated. Their classical limit as well as their relations to the respective canonical expressions are discussed. A fluctuation theorem is derived that expresses the ratio of probabilities of work for a process and its time reversal to the ratio of densities of states of the microcanonical equilibrium systems with corresponding initial and final Hamiltonians.From this Crooks-type fluctuation theorem a relation between entropies of different systems can be derived which does not involve the time reversed process. This entropy-from-work theorem provides an experimentally accessible way to measure entropies.Comment: revised and extended versio

    Stochastic learning in a neural network with adapting synapses

    Full text link
    We consider a neural network with adapting synapses whose dynamics can be analitically computed. The model is made of NN neurons and each of them is connected to KK input neurons chosen at random in the network. The synapses are nn-states variables which evolve in time according to Stochastic Learning rules; a parallel stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed. In the limit NN\to\infty with KK large and finite, the correlations of neurons and synapses can be neglected and the dynamics can be analitically calculated by flow equations for the macroscopic parameters of the system.Comment: 25 pages, LaTeX fil

    Von Neumann's expanding model on random graphs

    Full text link
    Within the framework of Von Neumann's expanding model, we study the maximum growth rate r achievable by an autocatalytic reaction network in which reactions involve a finite (fixed or fluctuating) number D of reagents. r is calculated numerically using a variant of the Minover algorithm, and analytically via the cavity method for disordered systems. As the ratio between the number of reactions and that of reagents increases the system passes from a contracting (r1). These results extend the scenario derived in the fully connected model (D\to\infinity), with the important difference that, generically, larger growth rates are achievable in the expanding phase for finite D and in more diluted networks. Moreover, the range of attainable values of r shrinks as the connectivity increases.Comment: 20 page

    The Effect of Nonstationarity on Models Inferred from Neural Data

    Full text link
    Neurons subject to a common non-stationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished, with machine learning techniques, provided the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a non-stationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the non-stationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as function of their rank (Zipf plots) are well-explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the non-stationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot.Comment: version in press in J Stat Mec

    Long‐Range N 14

    Full text link

    Dynamics and robustness of familiarity memory

    Get PDF
    When presented with an item or a face, one might have a sense of recognition without the ability to recall when or where the stimulus has been encountered before. This sense of recognition is called familiarity memory. Following previous computational studies of familiarity memory, we investigate the dynamical properties of familiarity discrimination and contrast two different familiarity discriminators: one based on the energy of the neural network and the other based on the time derivative of the energy. We show how the familiarity signal decays rapidly after stimulus presentation. For both discriminators, we calculate the capacity using mean field analysis. Compared to recall capacity (the classical associative memory in Hopfield nets), both the energy and the slope discriminators have bigger capacity, yet the energy-based discriminator has a higher capacity than one based on its time derivative. Finally, both discriminators are found to have a different noise dependence
    corecore