23,050 research outputs found
Lightcone fluctuations in flat spacetimes with nontrivial topology
The quantum lightcone fluctuations in flat spacetimes with compactified
spatial dimensions or with boundaries are examined. The discussion is based
upon a model in which the source of the underlying metric fluctuations is taken
to be quantized linear perturbations of the gravitational field. General
expressions are derived, in the transverse trace-free gauge, for the summation
of graviton polarization tensors, and for vacuum graviton two-point functions.
Because of the fluctuating light cone, the flight time of photons between a
source and a detector may be either longer or shorter than the light
propagation time in the background classical spacetime. We calculate the mean
deviations from the classical propagation time of photons due to the changes in
the topology of the flat spacetime. These deviations are in general larger in
the directions in which topology changes occur and are typically of the order
of the Planck time, but they can get larger as the travel distance increases.Comment: 25 pages, 5 figures, some discussions added and a few typos
corrected, final version to appear in Phys. Rev.
Detection of negative energy: 4-dimensional examples
We study the response of switched particle detectors to static negative
energy densities and negative energy fluxes. It is demonstrated how the
switching leads to excitation even in the vacuum and how negative energy can
lead to a suppression of this excitation. We obtain quantum inequalities on the
detection similar to those obtained for the energy density by Ford and
co-workers and in an `operational' context by Helfer. We revisit the question
`Is there a quantum equivalence principle?' in terms of our model. Finally, we
briefly address the issue of negative energy and the second law of
thermodynamics.Comment: 10 pages, 7 figure
Relativistic Elastic Differential Cross Sections for Equal Mass Nuclei
The effects of relativistic kinematics are studied for nuclear collisions of
equal mass nuclei. It is found that the relativistic and non-relativistic
elastic scattering amplitudes are nearly indistinguishable, and, hence, the
relativistic and non-relativistic differential cross sections become
indistinguishable. These results are explained by analyzing the
Lippmann-Schwinger equation with the first order optical potential that was
employed in the calculatio
Quantum measurement and decoherence
Distribution functions defined in accord with the quantum theory of
measurement are combined with results obtained from the quantum Langevin
equation to discuss decoherence in quantum Brownian motion. Closed form
expressions for wave packet spreading and the attenuation of coherence of a
pair of wave packets are obtained. The results are exact within the context of
linear passive dissipation. It is shown that, contrary to widely accepted
current belief, decoherence can occur at high temperature in the absence of
dissipation. Expressions for the decoherence time with and without dissipation
are obtained that differ from those appearing in earlier discussions
Cosmological and Black Hole Horizon Fluctuations
The quantum fluctuations of horizons in Robertson-Walker universes and in the
Schwarzschild spacetime are discussed. The source of the metric fluctuations is
taken to be quantum linear perturbations of the gravitational field. Lightcone
fluctuations arise when the retarded Green's function for a massless field is
averaged over these metric fluctuations. This averaging replaces the
delta-function on the classical lightcone with a Gaussian function, the width
of which is a measure of the scale of the lightcone fluctuations. Horizon
fluctuations are taken to be measured in the frame of a geodesic observer
falling through the horizon. In the case of an expanding universe, this is a
comoving observer either entering or leaving the horizon of another observer.
In the black hole case, we take this observer to be one who falls freely from
rest at infinity. We find that cosmological horizon fluctuations are typically
characterized by the Planck length. However, black hole horizon fluctuations in
this model are much smaller than Planck dimensions for black holes whose mass
exceeds the Planck mass. Furthermore, we find black hole horizon fluctuations
which are sufficiently small as not to invalidate the semiclassical derivation
of the Hawking process.Comment: 22 pages, Latex, 4 figures, uses eps
Inelastic scattering calculations with projected Hartree-Fock wave functions: Coupled channel treatment
Microscopic coupled-channel analysis of proton inelastic scattering from neon and magnesium ion
A study of the Hartree-Fock model space for light deformed nuclei
Effects of altering truncated basis space used in Hartree Fock model for light deformed nucle
- …