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The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that 
the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, 
the relativistic and non-relativistic differential cross sections become indistinguishable. These results are 
explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was 
employed in the calculation.
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The Lippmann–Schwinger (LS) equation for the transition am-
plitude is often used to calculate nuclear cross sections for 
nucleon–nucleus (NA) and nucleus–nucleus (AA) reactions [1]. For 
the elastic reactions that are considered in the current paper, 
the LS equation is written as a set of two equivalent equations: 
the elastic scattering equation and the defining equation for the 
optical potential. The underlying theory of interaction is moti-
vated by multiple scattering theory (MST), where the sum of 
nucleon–nucleon (NN) interactions is separated from the unper-
turbed Hamiltonian of the projectile–target system. The transition 
amplitude is expressed as a sum of pseudo two-body operators 
(Watson-τ operators), which are usually approximated by param-
eterizations of the free NN transition amplitude (impulse approx-
imation). Additionally, single scattering and factorization approxi-
mations are used to obtain an optical potential that depends on 
the NN transition amplitude, nuclear charge densities of the pro-
jectile and target, and the initial kinetic energy of the projectile in 
the laboratory frame [2–5].

There have been several theories that have been used success-
fully for the prediction of few-body system amplitudes. Three-body 
systems may be modeled with the Faddeev equations [6–8], and 
four-body systems may by modeled with the Yakubovsky equa-
tions [9]. Furthermore, the Alt–Grassburger–Sandhas (AGS) [10]
equations have been used for N-body amplitudes and are found 
from the (N − 1)-body and lower amplitudes. Although extremely 
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successful, the Faddeev, Yakubovsky, and AGS equations are limited 
to few-body problems [11–16].

The model described herein is primarily intended for space ra-
diation applications [4,5], which includes nuclear reactions result-
ing from collisions of both heavy and light nuclei with projectile 
kinetic energies extending several orders of magnitude (approxi-
mately 10 MeV/n–100 GeV/n) [17,18]. It is for this reason that the 
MST approach is taken for the NA and AA reactions. The few-body 
models would not be the best choice for many of reactions that 
occur in the space radiation environment.

The inclusion of relativity into the LS equation gives rise to 
interactions which may depend on nuclear spin. However, the im-
pact of relativistic kinematics alone can be significant and — as 
will be demonstrated — depends on the masses of the projectile 
and target, projectile energy, and the chosen parameterizations of 
the transition amplitude and nuclear densities. The non-relativistic 
(NR) and relativistic (REL) kinematic factors are expressed through 
the propagator of the AA transition amplitude, and the scattering 
amplitude is found. Elastic differential cross sections are computed 
from the absolute square of the scattering amplitude.

In this Letter, the effect of REL kinematics in nucleus–nucleus 
scattering is studied, and it is found that the scattering amplitudes 
calculated with REL and NR kinematics are nearly indistinguish-
able for nuclear collisions of equal mass nuclei when using the 
first order optical potential. It is shown that there are no observed 
significant differences between the NR and REL elastic differential 
cross sections for the equal mass case.

The effects of relativistic kinematics are being studied only in 
the context of LS equation and the usual assumptions made in the 
se (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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first order optical potential calculations, such as the impulse ap-
proximation, factorization approximation, and neglect of the Fermi 
motion. We do not imply that this is the only relativistic effect, 
nor that other effects are unimportant. We are showing that, in the 
above mentioned context, relativistic kinematic effects are negligi-
ble for equal-mass heavy-ion collisions.

The elastic scattering amplitude is determined from the transi-
tion amplitude, which is obtained by solving the following integral 
equation [1],

TAA(k′,k) = U (k′,k) +
∫

U (k′,k′′)TAA(k′′,k)

Ek − Ek′′ + iε
dk′′, (1)

where k (k′) is the initial (final) relative momentum of the 
projectile–target system in the center of momentum (CM) frame, 
E is the NR or REL total energy

Ek =
⎧⎨
⎩

k2/2μ for the NR case,√
k2 + M2

P +
√

k2 + M2
T for the REL case,

(2)

MP is the mass of the projectile, MT is the mass of the target, μ =
(MPMT)/(MP + MT), and k is the NR or REL relative momentum. 
TAA(k′, k) is the off-shell transition amplitude, and U (k′, k) is the 
optical potential. Using factorization and on-shell approximations 
for central potentials, the optical potential is expressed as [2–5,19]

U (k′,k) = ηAPATtNN(|k′ − k|)ρAP(|k′ − k|)ρAT(|k′ − k|), (3)

where η is the Möller factor [1,20], AP and AT are, respectively, 
the number of nucleons in the projectile and target, tNN is the 
nucleon–nucleon (NN) transition amplitude, and ρ(|k′ − k|) is the 
nuclear density of a nucleus [21,22]. For equal mass projectile and 
target nuclei (AP = AT = A), η = 1, and the optical potential is

U (k′,k) = A2ρ2
A(|k′ − k|)tNN(|k′ − k|). (4)

The on-shell scattering amplitude is related to the on-shell 
transition amplitude by [1]

f (k,k, k̂ · k̂′) = −(2π)2k
dk

dEk
t(k,k, k̂′ · k̂). (5)

The off-shell scattering amplitude is defined as

f (k′,k) ≡ β(k′) 〈k′|t(E(k′′) + iε)|k〉 β(k), (6)

where k′ �= k′′ �= k, and

β(k) = 2π i

√
k

dk

dEk
, (7)

such that equation (5) is satisfied when the relative momentum is 
on-shell.

The relative momentum can be expressed as

k =
⎧⎨
⎩

√
2μMT TLab

MP+MT
for the NR case,

MT√
s

√
TLab(TLab + 2MP) for the REL case,

(8)

where μ is the reduced mass, TLab is the kinetic energy of the 
projectile in the laboratory frame, and s = (MP + MT)

2 + 2MTTLab
is the Mandelstam variable. In the equal mass limit, MP = MT = M , 
the relative momentum reduces to k = kNR = kREL =

√
MTLab

2 .
In order to show that the NR and REL elastic differential cross 

sections are the same for equal mass systems, the off-shell scatter-
ing amplitudes are obtained by using equation (6);
βAA(k′)TAA(k′,k)βAA(k)

= βAA(k′)
βNN(κ ′)

βNN(κ ′)tNN(|k′ − k|)βNN(κ)
βAA(k)

βNN(κ)
A2ρ2

A(|k′ − k|)

+ P
∫ [

βAA(k′)βNN(κ ′)
βNN(κ ′)

tNN(|k′ − k′′|)βNN(κ ′′)
βNN(κ ′′)

× A2ρ2
A(|k′ − k′′|)

× 1

Ek − Ek′′
βAA(k′′)
βAA(k′′)

TAA(|k′′ − k|)βAA(k)dk′′
]

− iπ

∫ [
βAA(k′)βNN(κ ′)

βNN(κ ′)
tNN(|k′ − k|)βNN(κ ′′)

βNN(κ ′′)

× A2ρ2
A(|k′ − k′′|)

× δ
(

Ek − Ek′′
)βAA(k′′)

βAA(k′′)
TAA(k′′,k)βAA(k)dk′′

]
, (9)

where

β2
AA =

{−(2π)2 Am
2 for the NR case,

−(2π)2A
√

m2+κ2

2 for the REL case,
(10)

β2
NN =

{−(2π)2 m
2 for the NR case,

−(2π)2
√

m2+κ2

2 for the REL case,
(11)

and the propagator has been expressed in terms of its principal 
value, P,

1

Ek − Ek′′ + iη
= P

(
1

Ek − Ek′′

)
− iπδ(Ek − Ek′′). (12)

The Fermi motion of the nucleons inside the nucleus is neglected; 
therefore, the momentum imparted to each nucleon is κ = k/A. 
The mass of the nucleus, M , is approximately Am, where m is the 
average nucleon mass.

The pole structure for NR scattering amplitude is proportional 
to 1/(k2 − k′′2). With REL kinematics, the propagator can be ratio-
nalized such that the pole structure is manifestly the same as the 
NR case, thus

P

(
1

Ek − Ek′′

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P

[
2μ

(k2−k′′2)

]
for the NR case

P

[(√
M2+k2

2

)(
1+

√
M2+k′′2
M2+k2

k2−k′′2

)]
for the REL case,

(13)

where μ = M/2.
Using equations (10), (11), and (13), the scattering amplitude 

from equation (9) reduces to the following for on-shell scattering:

FAA(k, k̂′ · k̂) = fNN(k, k̂′ · k̂)A3ρA(k, k̂′ · k̂)

+ P
∫

fNN(|k′ − k′′|)h(k,k′′)A3ρ2
A(|k′ − k′′|)FAA(|k′′ − k|)

[−(2π)2](k2 − k′′2)
dk′′

− iπ

∫
fNN(k, k̂′ · k̂′′)A3ρ2

A(k, k̂′ · k̂′′)

× FAA(k, k̂′′ · k̂)
k

2
d
k′′ (14)
−(2π)
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Fig. 1. Elastic differential cross sections for 4He + 56Fe, 4He + 20Ne, 4He + 12C, and 4He + 4He reactions at a lab projectile energy of 1 GeV/n. NR results are indicated with 
solid red lines, and REL results are given as dashed blue lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
where⎧⎨
⎩

h(k,k′′) = 2 for the NR case

h(k,k′′) = 1 +
√

M2+k′′ 2

M2+k2 for the REL case.
(15)

The only difference between the two amplitudes is that h(k, k′′) = 2
in the NR case, and h(k, k′′) → 2 only near the elastic cut for the 
REL case. The optical potential is largest near the on-shell momen-
tum but decays rapidly thereafter. By definition, the principal value 
integral is never evaluated at k′′ = k; however, significant contribu-
tions occur near the elastic cut. Due to the rapidly decaying optical 
potential and large contributions near the elastic cut, little differ-
ences are observed between the NR and REL scattering amplitudes 
for projectiles and targets of equal mass.

The above derivation shows that when MP = MT = M , the REL 
and NR scattering amplitudes are approximately equal, therefore 
|ψ(+)REL 〉 ≈ |ψ(+)NR 〉. This approximation allows for a convenient 
summary of our calculation. The relativistic and non-relativistic 
half off-shell transition amplitudes can be related by

TNR(k′,k) = 〈k′|TNR|k〉 = 〈k′|UNR|ψ(+)

k 〉
= 〈k′|G−1|ψ(+)〉 = 〈k′|G−1GRELG−1 |ψ(+)〉
NR k NR REL k
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Fig. 2. Elastic differential cross sections for 20Ne + 20Ne reactions for projectile lab kinetic energies of 150, 500, 1000, 20 000 MeV/n. Eik. represents eikonal, LS3D represents 
three-dimensional Lippmann–Schwinger, and PW represents partial wave. Non-relativistic results are denoted (NR) and relativistic results are denoted (REL).
= 〈k′|G−1
NR GRELUREL|ψ(+)

k 〉

= k2 − k′ 2

2μ[E(k) − E(k′)] 〈k
′|UREL|ψ(+)

k 〉
= ξ TREL(k

′,k) (16)

where the propagators in momentum space are

GNR = 2μ

k2 − k′ 2 + iε
, (17)

GREL = 1
′ , (18)
E(k) − E(k ) + iε
E(k) = 2
√

M2 + k2, (19)

and

ξ = k2 − k′ 2

2μ[E(k) − E(k′)] , (20)

where

lim′ ξ = E(k)
. (21)
k →k 4μ



C.M. Werneth et al. / Physics Letters B 749 (2015) 331–336 335
Fig. 3. Elastic differential cross sections for 56Fe + 56Fe reactions for projectile lab kinetic energies of 150, 500, 1000, 20 000 MeV/n. Eik. represents eikonal, LS3D represents 
three-dimensional Lippmann–Schwinger, and PW represents partial wave. Non-relativistic results are denoted (NR) and relativistic results are denoted (REL).
Examining this result for the scattering amplitude in the on-shell 
limit

FNR(k,k · k′) = −(2π)2k
dk

dE

∣∣∣∣
NR

TNR(k,k · k′)

= −(2π)2μTNR(k,k · k′) (22)

FREL(k,k · k′) = −(2π)2k
dk

dE

∣∣∣∣
REL

TREL(k,k · k′)

= −(2π)2μRELTREL(k,k · k′) (23)

where μREL = E P ET = E(k) . We can then write
E P +ET 4
FREL(k,k · k′) = −(2π)2 μREL

ξ
TNR(k,k · k′)

= −(2π)2TNR(k,k · k′), (24)

FREL(k,k · k′) = FNR(k,k · k′), (25)

which is a valid approximation for nucleus–nucleus scattering 
when MP = MT.

There are many uncertainties that have been considered when 
selecting the fundamental parameterizations of transition ampli-
tude in the results that follow. Recently, Okorokov [23] has com-
piled slope parameter data from various experiments. Often exper-
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imentalists use amplitudes that are similar to the form used in the 
current work, but, in many cases, more than one parameter is var-
ied to obtain a good fit to experimental data. For example, when 
one attempts to extract the real to imaginary ratio from experi-
mental data, there are different approaches that may be used. The 
real to imaginary ratio of the transition amplitude, α, is usually ex-
tracted at −|t| = 0. In order to extract α from measurements of the 
differential cross section, the total cross section must be known. 
Experimentalists do not consistently use a single method for eval-
uating the total cross NN cross section. In some cases the total 
cross section is taken from other experiments at similar energy 
for the same reaction, and, for other cases, the total cross section 
is treated as a parameter such that overall transition amplitude 
gives the best fit to experimental data. Thus, adjustments to the 
relative momentum due to kinematic considerations in the data 
would have been compensated by variation in other parameters 
of the transition amplitude. The lack of spin-dependent models 
for use in extraction of the transition amplitude parameters fur-
ther compounds the issue of uncertainty. It was also found that 
Coulomb and nuclear-Coulomb interference was not always taken 
into account [24]. Moreover, there is a dearth of data in general 
for proton–neutron reactions [25] which also contributes to un-
certainty. Given the uncertainty associated the knowledge of the 
fundamental parameters, the approach taken in the current work 
and in a previous studies [4,26] — where model results are in good 
agreement with data — appears to be reasonable.

To illustrate these results, elastic differential cross sections are 
given in Fig. 1 for 4He + 56Fe, 4He + 20Ne, 4He + 12C, and 
4He + 4He reactions at a lab projectile energy of 1 GeV/n. NR 
and REL elastic differential cross sections are generated with a 
three-dimensional Lippmann–Schwinger (LS3D) solution [27–30]. 
See Ref. [5] for the explicit form of the nuclear densities, transition 
amplitude, and parameterizations that were used in the current 
work.

From Fig. 1, it is obvious that the NR and REL elastic differential 
cross sections are different for the 4He + 56Fe, 4He + 20Ne, and 
4He + 12C reactions, where the projectile and target masses differ. 
It is also observed that the largest REL difference occurs in the case 
of 4He + 56Fe, where the mass difference between the projectile 
and target is largest. There are no significant differences between 
the NR and REL results for the equal mass case of the 4He + 4He 
reaction.

Next, eikonal (Eik), partial wave (PW), and LS3D codes are used 
to predict the elastic differential cross sections for 20Ne + 20Ne 
reactions in Fig. 2 and 56Fe + 56Fe reactions in Fig. 3 with lab pro-
jectile kinetic energies of 150, 500, 1000, and 20 000 MeV/n. These 
solution methods are fully described in Refs. [1–3,5,19,27–30]. The 
PW and LS3D results are generated with NR and REL kinematics, 
whereas the Eik code is NR. Each figure shows that there is no 
significant difference between the NR and REL elastic differential 
cross sections, regardless of the energy.
In summary, it is noted that the REL propagator has pole struc-
ture that is similar to the NR case and that the REL and NR 
scattering amplitudes are approximately equal near the elastic cut. 
The optical potential is largest near the on-shell momentum and 
decays rapidly thereafter. Consequently, the NR and REL on-shell 
scattering amplitudes have been shown to be nearly indistinguish-
able for projectile and target nuclei of equal mass.
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