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A STUDY OF THE HArtTREE-FOCK MODEL SPACE FOR 

LIGHT DEFORMED NUCLEI 

by William F. Ford, Richard C. Braley, 
and J. Bar-Touv* 

Lewis Research Center 

SUMMARY 

The deformed Hartree-Fock method is used to study the effect on various nuclear 
properties of altering the truncated basis space used in structure calculations. After a 
brief discussion of the Hartree-Fock model and the means by which nuclear properties 
a r e  obtained from the projected physical states, results are presented for the nuclei 
neon-20, magnesium-24, silicon-28, and sulfur-32. Intrinsic spectra, nuclear radii, 
electromagnetic transition rates,  electron scattering form factors, and inelastic proton 
scattering c ross  sections a r e  investigated and wherever possible compared with experi- 
ment. Calculations a r e  performed with both Wood-Saxon and harmonic oscillator basis 
functions; 6 Wood-Saxon functions a r e  used, and up to  15 harmonic oscillator functions 
with various values of the oscillator length. 
space produce rather dramatic changes in the nuclear properties, indicating that 
Hartree-Fock calculations of the type presented here a r e  being performed in an inade- 
quate basis space. 

Results show that changes in the basis 

INTRODUCTION 

The shell model and many of its ensuing developments have established that a mi- 
croscopic description of the nucleus, in te rms  of the motions of individual nucleons, 
can be  successfully used to predict energies, spins, and parit ies of the low-lying nuclear 
states (refs. 1 to 3). While such descriptions a r e  generally designed t o  study level sys- 
tematics, the wave functions s o  obtained have occasionally been subjected to  more rigor- 
ous tests, such as prediction of electromagnetic transition ra tes  (refs. 4 to 6 ) ,  electron 
scattering form factors  (refs. 7 and 8), and inelastic proton scattering c ros s  sections 

*Professor of Physics, Negev University, Beer-Sheva, Israel. 



(refs.  9 to 11). 
wave function in the vicinity of the nuclear surface, whereas energy level systematics 
a r e  thought to be more dependent on details within the nuclear interior. Calculations 
of surface-dependent properties have been, for the most part, less successful in re- 
producing experimental data. 

creased. These studies differ from one another mainly in the type of two-body interac- 
tion employed and in the s ize  of the model space. The interaction may be  designed to 
fi t  the nucleon-nucleon scattering data (ref. 12), may be of the renormalized or "ef- 
fective" type (ref. 13), or may be obtained from an approximate solution of the Bethe- 
Goldstone equation (refs. 14 and 15). The model space nearly always employs harmonic 
oscillator wave functions, but there is little uniformity in the choice of oscillator length. 
Enough functions a r e  included t o  allow for configuration mixing or deformation of orbits; 
for the heavier nuclei, calculations are often kept within reasonable bounds by presum- 
ing the existence of an inert, closed-shell core. 

Efforts to  extend the early shell model calculations have been devoted primarily to 
spherical vibrational nuclei, with correlations between nucleons moving in an average 
field being introduced via pairing (ref. 2). 
tained by using some form of the random-phase approximation (refs. 2 and 3).  

formed rotational nuclei. Here the chief means of investigation has been the Hartree- 
Fock (HF) method, which has received its greatest  attention in the study of light de- 
formed nuclei. 
closed-shell core  assumption can be dropped and the problem is still tractable with re -  
spect to projection of states of good angular momentum from the intrinsic H F  wave 
f unc t i on s . 

Recent calculations by several  groups indicate that the H F  method (or  H F  with 
slight variations) provides a good description of low-lying states of the light deformed 
nuclei (refs. 1, 16 to  18).  
level ordering w a s  reproduced, with the level spacings in good agreement with experi- 
ment (refs. 5, 16, 17, and 19). On the other hand, E2 ra tes  and inelastic proton cross  
sections obtained from projected H F  states indicate that these functions do not have the 
proper behavior needed t o  predict correctly the magnitudes of quantities associated with 
inelastic transitions. If the underlying assumption of the HF method is correct,  namely, 
that excited levels within a band a r e  generated from the same intrinsic state, then the 
source of the difficulty may well be the asymptotic form of the intrinsic H F  state itself. 

Most H F  calculations have made use of basis  functions with harmonic oscillator 
radial dependence, in spite of their rapid fall-off at large distances. Of course, if a 
sufficiently large number of such states were included, the correct asymptotic behavior 
could be produced. Indeed, recent studies by several  groups indicate that calculated 

Most of these properties are quite sensitive to the behavior of the 

In recent years  the number of such microscopic investigations has steadily in- 

Excited states of these nuclei can be ob- 

At the same time there  has been significant progress  in our understanding of de- 

One of the major advantages of working with light nuclei is that the inert 

In most of the nuclei studied it w a s  found that the correct 
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nuclear properties improve - relative to  experiment - as the size of the model space 
increases. 
using both four and six major shells. They found that the quadrupole moment is quite 
sensitive to extension of the space, while the binding energy, r m s  radius, and kinetic 
energy per particle apparently a r e  not. 
several  nuclei in the lower half of the 2s-ld shell and found the spectra improved con- 
siderably as the space w a s  enlarged to  include four major shells. Preliminary inves- 
tigations by the present authors (refs. 21 and 22) revealed that E2 rates and inelastic 
proton c ross  sections obtained from projected HF wave functions a r e  substantially af- 
fected by the number and kind of basis functions used. These findings provide ample 
justification for further study of the effect on H F  calculations of variations in the model 
space, particularly with regard t o  inelastic transitions induced by scattering or interac- 
tion with the electromagnetic field. 

Microscopic descriptions of inelastic nucleon scattering have received considerable 
attention in recent years  (refs. 9 to  11) largely as a result of advances in the theory of 
nuclear structure. Most applications have been to  nuclei in the collective vibrational o r  
rotational regions where a large number of structure calculations have been made. The 
distorted wave Born approximation (DWBA) is generally used to describe the scattering 
process, and the structure problem is solved with an inert  core. 
coupled channel calculations by Glendenning (ref. 11) (but with an inert core) and DWBA 
studies by the present authors (ref. 9) in which core effects a r e  explicitly treated. 
There a r e  indications that DWBA may be adequate for low-lying states in most of the 
light deformed nuclei, but that coupled channels wi l l  be required for  s ta tes  with higher 
excitation energy. 

The scattering of high-energy electrons from nuclei a lso provides a powerful tool 
for nuclear structure studies. As a means by which nuclear models may be tested, 
electron scattering has  the attractive feature that the electron-nucleus interaction is 
well understood. 
tainties in the nuclear model a r e  further complicated by lack of knowledge of the 
nucleon-nucleus force. 

first Born approximation; however, it is well known that this method is inadequate for  
large momentum transfers  and that zeros  occur a t  the diffraction minima. 
(ref. 23) has proposed an approximation for high-energy electron scattering based on 
the eikonal approach developed by Glauber (ref. 24). 
tion fills in the zeros  of the diffraction minima and agrees  wel l  with the results of phase 
shift analyses. To our knowledge, however, this technique has only been tested for the 
simplest nuclear models. 

A s  a result of this, together with evidence that many of these nuclei have deformed 

Bassichis, Pohl, and Kerman (ref. 20) have studied the intrinsic H F  state 

Gunye (ref. 5) examined projected energies for 

Exceptions include 

This is in contrast to  the situation in nucleon scattering, where uncer- 

The analysis of high-energy electron scattering is carr ied out most easily in the 

Baker 

Baker's high-energy approxima- 

There is a large amount of experimental data available for  the 2s- ld  shell nuclei. 
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equilibrium shapes, the 2s- ld  shell has become a testing ground for the deformed HF 
method. Of the nuclei in this region, neon-20 ( Ne), magnesium-24 ( Mg), silicon-28 
( Si), and sulfur-32 ( S) have received the greatest  attention because of their conven- 
ient symmetries (even-even, N = Z).  While it is generally conceded that the simple HF 
model (i. e. ,  a single Slater determinant for the intrinsic state) provides a fairly good 
description of "Ne and 24Mg, the simple model appears t o  be inadequate for  28Si and 
32S. Accordingly there  have been several  attempts t o  explain their  structure in t e r m s  of 
slight modifications of the H F  method (refs. 16, 17, and 25). Among these, Bar-Touv 
and Goswami have proposed a model of "inverted coexistence" which seems to be prom- 
ising (ref. 25). It remains now to make microscopic studies of these nuclei with ex- 
tended model spaces. 

alterations in the model space on nuclear properties predicted by the Hartree-Fock 
method. Wave functions are obtained by projecting states of good angular momentum 
from intrinsic H F  states. 
different size and with Wood-Saxon radial  dependence as well as the usual harmonic 
oscillator behavior. 

For the comparison of Wood-Saxon and harmonic oscillator cases  only six basis 
functions a r e  used, since all the other Wood-Saxon eigenfunctions a r e  unbound. 
case the severe truncation makes it necessary to use an "effective" nucleon-nucleon 
interaction, and the Volkov force (ref. 26) w a s  chosen. For the comparison of model- 
space size, sets of 6, 10, and 15  harmonic oscillator functions a r e  used with varying 
oscillator lengths. Here one of the "realistic" nucleon-nucleon interactions, namely, 
that devised some years  ago by Tabakin (ref. 27), is used. 

In the next section, a brief review of the HF method is given, and a summary of the 
technique used to calculate nuclear properties from the projected wave functions. De- 
tails of the calculation a r e  outlined, the resul ts  are discussed, and a summary and some 
conclusions a r e  presented in later sections. 

20 24 
28 32 

The purpose of this work is to examine, as consistently as possible, the effect of 

Several nuclear properties a r e  examined for  model spaces of 

In this 

THEORY 

Nuclear States 

The low-energy spectra of some nuclei remind one of the spectrum of a rigid rota- 
tor, that is, the energy levels a r e  proportional to J(J + 1). This observation led to the 
early descriptions of deformed nuclei in t e rms  of a rotating intrinsic state (ref. 28). 
Thus, a natural starting point for the deformed H F  method w a s  provided. In the H F  pic- 
ture,  the intrinsic state is described in t e rms  of nucleons moving in a deformed field 
with respect to  body-fixed axes. Physical states of the system may be thought of in 
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t e rms  of various rotations of the intrinsic state. 
obtained from the intrinsic state by the well-known method of angular momentum pro- 
jection (ref. 29). 

Intrinsic -~ states. - In the HF method the intrinsic nuclear wave function is approxi- 
mated by a single Slater determinant 

Formally, the physical states may be 

whose orbitals qh(gn) are determined by minimizing the expectation value of the intrin- 
s ic  nuclear Hamiltonian. Solution of this variational problem leads to  the HF equations 

where 

( i l h l j )  = ( i  

The i and j refer  to single-particle (s p.) states, and the sum on X runs overall 
occupied orbits. In equation (Zb), t represents the s. p. kinetic energy operator, and 
the tilde indicates that the two-body matrix elements a r e  antisymmetrized. 

To solve the H F  equations, each of the orbits is written in the form of a (truncated) 
expansion 

in which the summation over j is partly restricted by the symmetries of the nuclear 
system. The C .  a r e  determined self-consistently from equations (2), and the H F  
energy is then found from the expression 

h 
J 

Physical states. - The intrinsic state GK obtained from the solution of the HF 
~ -~ 

equations is not an eigenfunction of total angular momentum. 
known prescription for obtaining such eigenfunctions, namely (refs. 1 and 29), 

However, there  is a well- 
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J/ (1, . . ., A) =- 2 J +  '/do D&K(C2)*R(o)+K(1, . . . , A) 
2 J M  

8n 

J where DMdSL) is the rotation matrix, R is the rotation operator, and M and K a r e  
the projections of the total angular momentum J onto the space- and body-fixed axes, 
respectively. When the restriction to  axial symmetry is made on the HF state, equa- 
tion (5) simplifies to 

(5) 

J where dMK(0) is the reduced rotation matrix. In all of the analysis which follows the 
nuclei to be considered have even N and even Z, and only states within the ground state 
rotational band a r e  considered (i. e. ,  K = 0). Consideration of the symmetries of +K 
enables one to  show that, for even-even nuclei, the J values of states in the ground 
state band a r e  all even. 

Nuclear Properties 

The prediction of nuclear properties requires evaluation of reduced matrix elements 
of certain operators between initial and final s ta tes  of the nucleus. Most of these oper- 
a tors  can be expressed as a sum of single-particle operators (an exception, of course, 
being the nuclear Hamiltonian). When this is the case, it is possible to evaluate the re -  
duced matrix elements in such a way that the integration over the coordinates of the 
single-particle operator is the last to be performed. The previous integrations over the 
other (A-1) coordinates thus yield a quantity which depends only on the initial and final 
states of the nucleus and the nature of the transition involved. This leads directly to the 

if concept of an inelastic transition density pLsJ(r), which essentially gives, for the trans- 
ition i - f ,  the probability for  absorption of angular momentum .?= : + ,? by the last 
nucleon as a function of its distance from the nuclear origin. This very useful concept 
has  been discussed in detail in a previous publication (ref. 30). 

In the cases  considered here, each single-particle operator 52 may be expanded in 
t e r m s  of spin-angle tensors with coefficients wLsJ(r) which give the radial dependence 
of the operator. 
pressed as 

Reduced matrix elements of the many-body operator may then be ex- 
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if The expansion of pLSJ(r) 
is particularly convenient 
express equation (7) as 

in t e rms  of a biorthogonal set  of (Gauss-Laguerre) functions 
from a calculational point of view since i t  enables one to r e -  

For most operators the integral over r can be carr ied out analytically, and the sum 
over n has been found to converge rapidly. This is accomplished by suitable choice of 
the adjustable parameters CY and p appearing in the Gauss-Laguerre functions. 

Static nuclear properties. - The initial and final states of the nucleus a r e  the same 
in this case. 
t r ix  elements is particularly simple since Ji = Jf = 0 and L = S = J = 0. 
ground state properties which we require to be in agreement with experiment is the r m s  
radius. In this case, the operator is 

For ground state properties of even-even nuclei, the calculation of the ma- 
One of the 

2 1  A 2  
n R =-E r 

A n=l  

and equation (8) becomes 

where, for convenience, we have introduced 

(9) 

The electric quadrupole moment provides information about the shape of the nucleus. 
To obtain it we evaluate the reduced matrix element of 
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where 7n is the z-component of the isotopic spin operator for  the nth nucleon. The 
result  is 

Only the proton par t  of the transition density is involved here, as is indicated by the p 
superscript on F. 

A s  pointed out in the INTRODUCTION, the elastic scattering of high-energy elec- 
trons is described more  accurately by the Baker approximation than by the first Born 
approximation. The form factor for electron scattering is given by 

in which (do/dCi)M is the Mott c ross  section and 

where 

as shown by Baker. 
the evaluation of equation (15) is rather involved; it is presented in the appendix. 

t o  excited states provides a more sensitive test of the validity of any nuclear model. 
particular interest to  us shall be electromagnetic transition ra tes  and inelastic particle 
scattering. For the EX transition ra te  from i to  f we obtain (ref. 30) 

When microscopic wave functions a r e  used to represent the target, 

Dynamic nuclear properties. ~~ - - The prediction of quantities which involve transitions 
Of 
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03 
-X-(3/2) C Fifp 

X o h  B(EX; i - f )  = e ~ 

2Ji + 1 n=O 

For  the inelastic scattering of high-energy electrons we  evaluate the Born approximation 
to the electron scattering form factor, obtaining an expression of the form 

2Ji + 1 aY 

I F(q) I = - x l G L  c Fifp LoLn 3- nL (1 - a', y'q) 
2Ji + 1 n=O 

Details of the derivation may be found in reference 30. 

DUCTION, to make some assumptions concerning the nature of the nucleon-nucleus 
force responsible for  the transition. The standard assumption, and the one adopted 
here, is that this interaction may be represented as a sum of two-body "effective" po- 
tentials: 

For the inelastic scattering of protons it is necessary, as mentioned in the INTRO- 

A 

n= 1 
VG0, XI = V(X',, Zn) 

In order to calculate the scattering amplitude, the reduced matrix elements of - -  - 
V(xo, A) must be  obtained as functions of the projectile coordinates xo, and then ex- 
panded in spin-angle tensors; the radial coefficients fFsJ(ro) a r e  known as the nucleon 
scattering form factors (ref. 9). Because of the above assumption, V is a one-body 
operator in the coordinates of the target nucleons and the methods of equations (7) and (8) 

apply. The resulting form factors a r e  expressible as 

For  details the reader is again referred to reference 30. 

DETAILS OF THE CALCULATIONS 

The HF variational problem w a s  solved subject t o  the condition that the intrinsic 
state possess axial symmetry and fourfold degeneracy (ref. 1). Each orbit is therefore 
specified by its z-components of spin and isospin and further specified by i t s  projections 
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onto basis functions labeled by the quantum numbers (n2 j ) .  The model spaces to be used 
in this work a r e  listed in table I. 

The final choice of oscillator length b = for  the harmonic oscillator func- 
tions is based on the requirement that the r m s  radius be well reproduced for each nuc- 
leus, that is, the r m s  radius serves  as a constraint in the variational problem. How- 
ever, the effect (on other quantities) of variation of the oscillator length is also investi- 
gated. 

The parameters of the potential which produced the Wood-Saxon functions were 
chosen so as to  yield approximately the 017 experimental single-particle energies 
(ref. 4). This potential has the form 

with 

and V = -56. 5 MeV, R = 3. 15 femtometers, a = 0.65 femtometer, and CY = 20. There 
a r e  states generated by this potential other than those shown in table I, but these lie in 
the continuum. 

0 

The two-body matrix elements have been calculated using the Tabakin interaction 
for most of the cases  in which harmonic oscillator functions a r e  used. This is a smooth, 
nonlocal separable potential which has been used successfully in several shell model and 
H F  studies (refs. 12 and 20). The general form of the potential is 

2 2 '  

details may be found in reference 12. 
For  calculations involving the comparison of Wood- Saxon and harmonic oscillator 

functions, one of the "effective" nucleon-nucleon interactions w a s  used, as mentioned 
in the INTRODUCTION. We have chosen a Volkov force (ref. 26) which yields fairly 
good saturation properties fo r  the p-shell nuclei: 
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where 

- - c  -( I Fl-r2 I 2)/2. 25 -( lrl-F2 l2)/0. 64 
f (  Irl - r2  I )  = - 78 e + 82.5 e 

with CY = 0. 1875, p = -0.0775, y = 0. 2025, and 6 = -0. 1775. Another reason for the 
choice of this potential is that it is local, which is particularly convenient for  calculat- 
ing two-body matrix elements with Wood-Saxon wave functions using the technique of 
reference 4. 

Transition amplitudes for inelastic proton scattering are obtained in the DWBA, 
neglecting exchange effects between projectile and target nucleons. 
ca l  potential is used to  generate the distorted waves: 

The following opti- 

where Vc is the Coulomb term,  Vo the strength of the r ea l  potential, Ws the strength 
of the surface absorption, and VLs the spin-orbit strength. 
usual Wood-Saxon form factor, and ps and pLs a r e  derivatives of functions similar to 
pv but with appropriate radius and diffuseness parameters. 

Two different forms of the interaction between projectile and target nucleon a r e  
considered, the first due t o  Glendenning and Veneroni (ref. 10): 

The quantity pv(r) is the 

and the second (with a considerably shorter range) to Thompson and Tang (ref. 31): 

2 
+12/1.47) 

V(r12) = -72.98 e (PTE + 0.632 PsE) 

RESULTS 

Harmonic Oscillator Basis 

In the usual structure calculation which employs harmonic oscillator basis functions, 
the number of functions to be included and the value of the oscillator length a r e  "free 
parameters.  '( Although the effect of enlarging the model space has been investigated in 

11 



some detail, the effect of variations in the oscillator length has not been studied exten- 
sively. 
oscillator length used, and the nature of this dependence should be examined. 

of varying both the number of basis functions and the value of the oscillator length. In 
the final analysis, the oscillator length is adjusted so that the r m s  radius for each nu- 
cleus, calculated in the largest model space, is in agreement with experiment. 

a r e  compared the intrinsic H F  states and single-particle energies for the three model 
spaces defined in table I, using an oscillator length of 1.88 femtometers. In table II(b) 
the H F  energies and gaps (between last occupied and first unoccupied orbitals) are also 
compared. The level ordering is preserved in all three cases, and the H F  energy de- 
creases  (binding energy increases) as the model space is enlarged, as has been observed 
previously (ref. 20). The energy gap A increases as well, indicating that the H F  so- 
lution becomes more stable as the model space is enlarged. 

We now turn to the physical nuclear properties which a r e  obtained by projecting 
states of good angular momentum from the intrinsic HF state. The projected energy 
spectrum for 20Ne has been shown to improve as the model spacing is enlarged (ref. 5). 
However, other important nuclear properties have gone untested in this regard. 

In table 111 we show the effect on the projected r m s  radius and E2 transition rate  of 
variations in both the size of the model space and the value of the oscillator length. Ta- 
ble III(a) gives the results for fixed oscillator length. As the space is enlarged, the E2 
rate  increases, although even in the largest space it is far below the experimental value. 
On the other hand, the nucleus contracts as the number of basis functions is increased 
and eventually has a radius smaller than the experimental value. (Experimentally, 

is ( R  ) 
probably of the order of 5 percent. Experimental radii were obtained from R. de 
Swiniarski, and E2 rates  appear in ref. 32. ) 

one might expect both the r m s  radius and the E2 rate increase with oscillator length. 
This is due to the displacement toward larger radius of the maxima of the radial func- 
tions as b is increased. 

Finally, table III(c) shows the results when the r m s  radius is essentially fixed, 
serving as a constraint on the variational calculation. It should be noted that in none of 
these cases does the value of b minimize the H F  energy, considered as a function of b. 
A typical example is shown in figure 1, where the H F  energy is plotted as a function of 
oscillator length (for space 2). A smooth curve is drawn through the points indicating a 
minimum H F  energy at b = 1.83 femtometers, whereas table 111 indicates that the cor- 
rect  r m s  radius is achieved at  b = 1.88 femtometers. 

When a truncated basis is employed, however, the results will  depend on the 

In this section we present results indicating the effect on various nuclear properties 

Neon-20. - We begin by presenting results for fixed oscillator length. In table II(a) 

2 1/2 2 1/2 
= 2 . 7 9  fm, and B(E2; Of - 2+) = 286 e2 - fm4. The e r ro r  on ( R  ) 

Table III(b) gives the results for a fixed number of basis functions, showing that as 
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As an additional test of the wave function, the E2 ra tes  between other states within 
the ground state band a r e  predicted and compared with experiment in table IV. The E2 
rate for 4' - 6' is underestimated in much the same fashion as the O+ - 2' rate; how- 
ever, the 2+ - 4+ rate is slightly beyond the experimental limit. 
to find a predicted E2 ra te  which overestimates the experimental result; in fact, in 
view of the experimental uncertainty in the r m s  radius, it is not unreasonable to claim 
agreement with experiment for this transition. Of course, the agreement may be for- 
tuitous; but if not, the result suggests that perhaps each of the physical states should be 
generated from a different intrinsic state. Recent investigations by Caste1 and Parikh 
(ref. 16) indicate that this may be a better procedure than the standard approach, in 
which the idea of a band generated from a single Slater determinant is invoked. 

Unfortunately, there are no experimental data available, at the present time, from 
which elastic electron scattering form factors for 20Ne may be extracted. However, 
since the method developed by Baker has not been used previously to investigate micro- 
scopic nuclear wave functions, it seems worthwhile to display some of the changes 
which result from variations in the nuclear model and in the parameters which describe 
the scattering. In figure 2 the form factors a r e  compared (for space 3 with b =  1.93 fm) 
in the Baker approximation and in the Born approximation. The more sophisticated 
method fills in the diffraction minimum and shifts the second maximum to lower q. 
Also shown is the result which occurs if correction is not made for the finite size of the 
proton. The effects of enlarging the model space are shown in figure 3; the trend is to 
shift the first minimum t o  larger q and to increase the magnitude for smaller q 
values . 

of the target nucleus as well as the radial dependence and mixture of the two-body force 
manifest themselves in the shape and size of the nuclear form factor. In figure 4 the 
scalar form factor f202(r) is presented for the O+ - 2+ transition, using the 
Glendenning-Veneroni interaction. Although the shape of the form factor does not change 
noticeably, its magnitude increases with the number of basis functions. The vector form 
factor fif12(r) has roughly the same shape as the scalar but is usually smaller by about 
two orders of magnitude. 

The c ross  sections obtained using these form factors a r e  shown in figure 5. A s  the 
model space is enlarged, the c ross  section nearly doubles, although its shape is not 
changed significantly. The angular distribution is given reasonably well; however, it  
underestimates the experimental data (of de Swiniarski) by at least a factor of 2 in the 
forward direction. 

Since there are uncertainties in the interaction between the projectile and the bound 
nucleons, these calculations a r e  repeated for the Tang force. As  can be seen from the 
comparison in figure 6, the major difference in the form factors occurs for radii larger 
than 4 femtometers. The effect which this has on the c ross  section is shown in figure 7: 

It is surprising indeed 

We turn now to the case of inelastic proton scattering, recalling that the structure 

if 
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the magnitude of da/dS2 using the Glendenning-Veneroni force is generally larger than 
that using the Tang force, despite the fact that the latter is about 40 percent stronger. 
This occurs because of the short range of the Tang force, which makes the form factor 
smaller in the important surface region. 

Magnesium-24. - The early HF studies of 24Mg by Bar-Touv and Kelson indicated 
that the nucleus is asymmetric, because of the larger binding energy and gap possessed 
by the asymmetric solution. However, comparison of projected spectra for the two 
shapes (ref. 19), together with recent studies in which pairing effects are included 
(ref. 33), indicates that its intrinsic structure is still in doubt. Furthermore, Bar- 
Touv has observed that the symmetric and asymmetric states have a large overlap. 
purposes of this study, therefore, there is little reason to  prefer one solution to  the 
other; the symmetric solution is actually chosen for convenience in projecting states of 
good angular momentum. 

The intrinsic HF states and single-particle energies a r e  compared in table V(a). 
(For brevity, resul ts  in the smallest space wil l  not be presented for  24Mg on the r e -  
maining nuclei. ) The HF energies and gaps a r e  shown in table V(b), and the variation 
of the H F  energy with oscillator length in figure 8. The general  trends a r e  clearly the 
same as for 20Ne, and we omit much of the detail; resul ts  for  the ultimate choice of 
oscillator length a r e  given in table V(c). 

Some of the electromagnetic transition ra tes  predicted a r e  presented in table VI; 
the 0' - 2' ra te  is underestimated by about 25 percent, but as in the case of 20Ne, the 
2' - 4' is overestimated. It appears that the wave functions for both of these nuclei 
have similar inadequacies. 

The electron scattering form factor is compared with unpublished experimental data 
of H. Hultzsch in figure 9. The predicted result  is quite good for  q-values up to 1 . 2  
femtometer-' but does not correctly predict the first minimum nor does i t  r i s e  suffi- 
ciently at the secondary maximum. 
shape of the 24Mg wave function in the nuclear interior or some inadequacy in the method 
for computing the form factor. 

The DWBA prediction for inelastic proton scattering t o  the first 2' level is compared 
with experiment (ref. 34) in figure 10. The general quality of the predicted c ross  section 
is the same as for 20Ne: the angular distribution is fairly good but drops off a little too 
rapidly a t  larger angles, and the prediction underestimates the data by roughly a factor 
of 2. 

suspecting that 28Si is too complicated for description by the simple H F  picture, and 
that one must resor t  to the more involved methods such as "inverted coexistence" or  the 
inclusion of various other types of correlations. The projected energy spectrum yielded 
by the H F  model is far too compressed, for one thing, and the 0' - 2' transition ra te  is 
badly underestimated. 

For 

It is not clear whether this is due to the incorrect 

Silicon-28. - A s  mentioned in the INTRODUCTION, there  a r e  several  reasons for 
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On the other hand, all spectra and E2 ra tes  calculated to date have made use of 
limited model spaces. Enlarging the model space is known to  have a significant effect 
on these quantities, so there is still reason to study this nucleus in the simple H F  pic- 
ture. In the discussion of 28Si, w e  will first examine the results obtained from the HF 
model, and then present some resu l t s  based on the assumption of inverted coexistence. 

The oblate solution of 28Si is the lowest of the three (the other two being prolate, 
with EHF = -58.30 MeV, and spherical, with EHF = -45.29 MeV, for the largest  space 
with b = 2.09 fm), and unless otherwise specified, will be the one for which resul ts  are 
given. In tables VII(a) and (b) the HF intrinsic states, H F  energies, and energy gaps 
a r e  compared for spaces 2 and 3. The general trends are similar to those for 20Ne and 
24Mg. Results obtained when the oscillator length is varied are also quite similar and 
wi l l  be omitted for 28Si and 32S. 

In table VII(c) one finds striking evidence, however, of the difference between 28Si 
and the preceding nuclei. 
and decreases as the model space is enlarged. It is possible, of course, that this rep- 
resents convergence toward the experimental value from above, much as the resul ts  for 
"Ne and 24Mg seem to indicate convergence from below; however, the discrepancy be- 
tween the measured 2' - 4' transition ra te  (60. 1 e fm , e = 1.6X10-19 C) and the pre- 
dicted value (193 e fm ) is far greater  than found for the previous nuclei. The electron 
scattering form factor is shown in figure 11, and the proton scattering c ros s  section in 
figure 12. Although the quality of the former is about the same as found for 24Mg, the 
drop in the proton cross  section for angles smaller than 40' is discouraging. The over- 
all impression is that 28Si is not well described by the simple H F  picture. 

A s  mentioned ear l ier ,  there  have been proposals for modifying the H F  treatment of 
28Si. None of these has been tested using a detailed description in which the core orbi- 
tals are varied and an extended basis  is used. The model of inverted coexistence (IC) 
proposed by Bar-Touv and Goswami (ref. 25) wil l  be tested here. 
0; ground state and 0; excited state wave functions a r e  taken to  be linear combinations 
of the spherical and deformed (oblate) H F  solutions: 

The ground state E2 ra te  is overestimated for both spaces, 

2 4  
2 4  

In this model, the 

The values of (Y and p a r e  taken from the results of Bar-Touv and Goswami, and CY' 
and p' a r e  determined from the requirements of normalization and orthogonality. 

In table VlTI the predictions based on the IC model a r e  compared with those pre- 
dicted by the simple H F  model and with experiment. With the IC model all three quanti- 
t ies are brought within the experimental limits. Unfortunately, the IC model has no 
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effect on the E2 ra te  for the 2+ - 4' transition and negligible effect on the electron 
scattering form factor and inelastic proton cross  section. 
proton scattering c ros s  section might be changed considerably in a coupled channel 
calculation because of the strong coupling between the 2' and excited 0' states. ) 

ply to 32S. The only specific exception to  the introductory remarks  is that early H F  
studies for this nucleus indicated that it might be asymmetric (ref. 35). 

F o r  32S, the prolate solution yields the lowest H F  energy. Tables IX(a) and (b) 
compare the H F  intrinsic states, H F  energies, and energy gaps for this solution in 
spaces 2 and 3, with resul ts  very similar to  those observed for 28Si. The radius and 
E2 rate a r e  compared in table lX(c), again with similar findings; the result for the ob- 
late solution is also included because it is within the experimental limit (this is prob- 
ably fortuitous). The qualitative features of the electron scattering form factor (fig. 13) 

(It should be noted that the 

Sulfur-32. - Generally the comments made previously with regard to  28Si a lso  ap- 

and the inelastic proton scattering c ross  section (fig. 14) are much like those found for 
28 a: 

131. 

An inverted coexistence calculation w a s  not carr ied out for 32S because of the ac- 
cidental orthogonality of the prolate and spherical intrinsic states. (Our method for 
obtaining inelastic transition densities requires inversion of the matrix whose elements 
a r e  the overlap integrals of the initial- and final-state orbits; because of the accidental 
orthogonality, the determinant of this matrix vanishes for the c ros s  term. ) We did 
ca r ry  out such a calculation for the oblate and spherical states, however, and found it 
yielded resul ts  analogous to those for a prolate-spherical 28Si calculation. We suspect, 
therefore, that the IC model would probably fa re  no better for 32S than it did for 28Si. 

Wood-Saxon Basis 

In this section nuclear properties calculated using a Wood-Saxon basis a r e  com- 
pared to  those obtained with a corresponding harmonic oscillator basis. The choice of 
oscillator length (b = 1.924 fm) is based on previous investigations by two of the present 
authors (ref. 4), in which it w a s  found that this value gave the best agreement between 
nuclear properties calculated using the two different bases when the core w a s  inert. 

The intrinsic H F  states and single-particle energies for 20Ne are compared in ta- 
ble x. The level ordering is the same for both bases, with the Wood-Saxon orbital 
energies slightly larger except for the last orbit. Similar resul ts  (not shown) a r e  found 
for these intrinsic properties of the other three nuclei, except that in 32S the ordering 
of the last three orbitals is different (they a r e  nearly degenerate in the harmonic oscil- 
lator basis). 

Table XI compares some other properties for the two bases, nucleus by nucleus. 
The WS prediction for the r m s  radius is always smaller than the HO prediction, and, 
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except for 32S, closer to experiment. 
chosen so as t o  reproduce the 170 single-particle energies, it is perhaps not surprising 
that the WS prediction should underestimate the nuclear size for heavier elements. The 
E2 ra tes  are roughly comparable for all four nuclei. The H F  energies (larger here be- 
cause of the Volkov force) demonstrate an ear l ier  (ref. 4) finding: because of the nor- 
malization to unity, the longer tails on the Wood-Saxon basis functions force them to be 
smaller within the nuclear interior, resulting in less  binding energy. 

in figures 15 and 16. In the former,  the WS electron scattering form factor for 20Ne 
is seen to be very similar to  that obtained previously in the largest model space, while 
the HO form factor is quite poor; in figure 16, however, the reverse  is t rue for 32S. 

20Ne is not significantly altered by the change in basis, except for  a slight decrease in 
magnitude; the same holds t rue for the other three nuclei (not shown). 
seems to  be the combined action of normalization and the longer tail which is responsible 
for  the decrease; the effect can be seen quite clearly in the 20Ne form factors shown in 
figure 18. 

Since the Wood-Saxon well parameters  were 

A drawback of any study in which the wel l  parameters do not change is illustrated 
I 

b 

1 

Figure 17 demonstrates that the c ross  section for inelastic scattering of protons by 

Once again, it 

CONCLUDING REMARKS 

The purpose of this work has been to investigate the effects of alterations in the 
model space used for  Hartree-Fock calculations. 
t ies have been examined; these were obtained from microscopic wave functions of good 
angular momentum projected from the intrinsic H F  states. The intrinsic states were 
assumed to have axial symmetry and fourfold degeneracy, but no inert core assumption 
w a s  made. 
study because of their convenient symmetry properties and because of the large amount 
of experimental data available for them. 

as the basis  space is enlarged. 
extent of the radial basis functions. It w a s  observed, for example, that if the correct  
nuclear radius is to be obtained, the oscillator length must vary significantly from nu- 
cleus to nucleus; similarly, the use of a (limited) Wood-Saxon basis requires different 
well parameters for different nuclei. 

although 20Ne and 24Mg were described reasonably well by the simple H F  picture, this 
w a s  not t rue of the closed subshell nuclei 2'8Si and 32S. A test  of the model of inverted 
coexistence for  these nuclei seems to yield improved resul ts  for the ground state O+ - 2+ 
transition ra te  and gives a good value for the excited state O+ - 2+ transition rate;  how- 

A number of different nuclear proper- 

The 2s- ld  shell nuclei 20Ne, 24Mg, 28Si, and 32S were chosen for this 

The general resul ts  indicate that the predicted nuclear properties vary significantly 
These properties a r e  likewise sensitive to the shape and 

Even when a fairly large space w a s  used in the structure study, it w a s  found that, 
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ever,  many other properties were unaffected by this modification, notably the other E2 
rates,  the electron scattering form factors, and the inelastic proton scattering c ros s  
sections. 

approximation were unsatisfactory when compared with experiment. 
say whether this is due to poor nuclear wave functions or t o  inadequacy in the scattering 
approximation. 

Some insight into this problem may be gained by comparing the nuclear densities 
(fig. 19) with the form factors (fig. 20) for the four nuclei. One expects in general t o  
find a correlation between the smaller and larger portions of these curves, and vice 
versa,  simply from the nature of the Fourier transformation which they represent. 
slope of the form factor is directly ,proportional to R2 as q - 0, for instance, and the 
frequency of the form factor minima are closely associated with lack of smoothness in 
the density for small  r. 

But these curves demonstrate once again a correlation which is generally ignored, 
the correlation between asymptotic behavior and interior behavior resulting from the 
normalization condition. This illustrated rather dramatically in figure 19, where the 
reciprocal of the r m s  radius for each nucleus is marked along the scale a t  the right, to 
be  compared with the nuclear density at the origin, which can be read from the scale at 
the left. The behavior of the density in the vicinity of the nuclear surface is evidently 
strongly correlated with its behavior at the origin. 

Our major conclusion, of course, is that the Hartree-Fock model gives unreliable 
resul ts  if  used in a model space as small  as those examined here. This is unfortunate, 
for the simplicity of the scheme is lost as the model space is enlarged, to say nothing 
of the computing time. 

On the other hand, we must point out other moderating conclusions. It is clear, 
for example, that the asymptotic part of the basis  function plays an important role, and 
it may well be that the increase in the number of basis functions really represents an 
attempt to  reproduce this asymptotic behavior. 
about the size of the model space can be made until a study of this nature has been made 
with basis functions more appropriate to  the problem. 

Another question may be raised concerning the use  of a "realistic" two-nucleon 
force rather than an "effective" one. With no evidence to the contrary to guide us, we 
made the assumption that the general trends would be the same in either case. The most 
accurate procedure would be to obtain solutions of the Bethe-Goldstone equation for each 
new basis set and then proceed to the H F  problem; but such a task would be prohibitively 
difficult. 

develop the theory s o  that the operators contain the effect of the excluded space. This 
results, of course, in an effective interaction, but more importantly, i t  also resul ts  in 

Generally speaking, the electron scattering form factors predicted using the Baker 
It is difficult to 

The 

Therefore, no definitive statements 

An alternative approach has been suggested recently (ref. 36). It is possible to 



renormalized operators fo r  all the observables studied here. At present the theory is 
in its preliminary stages but certainly should be considered in any future examination 
of model spaces for Hartree-Fock theory. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 13, 1970, 
129-02. 
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APPENDIX - THE BAKER APPROXIMATION 

The high-energy approximation for  electron scattering consists of using the ap- 
proach of Glauber to  solve the Dirac equation for an electron in the presence of a scalar  
potential. Baker shows that, in this  approximation, the matrix element which must be 
evaluated is 

M = Jo(qb)[eix(b) - 4 b db 
i o  

where 

X(b) = - - E Sm V(b, z)dz 
k -a 

V(b, z) = V(r) =Jp(E)Vc( IE - F()d?t (3) 

Here p(R) is the nuclear density function and Vc( /R’ - ;I) is the screened coulomb po- 
tential, 

VJX) = - 3 f(iJ 
X 

where CY is the fine structure constant, Z is the nuclear charge, and a is the screen- 
ing radius, and the screening function used here is 

f(f) = 1 - X 

G2 
Assuming that the nuclear density i s  spherically symmetric, it can be shown that 

2 where r = d b  + z2, Vo(r, R) is the zero order multipole of Vc, and 7 = aZ(E/k). 
Now Vo(r, R) must be known only for values of R 5 F$-, under the assumption that p(R) 
is negligibly small for  R > %. Based on this assumption, it can be shown that 
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Then it follows that 

where 

and 

Xl(b) = 87rq /m dz f 3  (L - l)p(R)R2 dR 
R r  0 r 

We have found it convenient to integrate equation (1) by parts,  obtaining 

M = _k Sm Jl(qb)xl(b)eix(b)b db (7) 
q o  

where X'(b) = dX(b)/db. The evaluation of G(b)  is simple, and it can be shown that 

Xi(b) = - " q I* p ( d m ) r 2  dr  (8) 

This can then be integrated to obtain Xl(b). Now, if we assume that p(r) can be repre- 
sented by a se r i e s  of Gauss- Laguerre functions 
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and then make use  of the addition theorem for  Laguerre polynomials, it can be shown 
that 

From this we obtain 

M 

1 m 
m= 1 

where 

and 

Equation (8) may be integrated to yield 

03 

Im(x) = f e-OYL;(y)dy 
X 
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The %(b) and Xl(b) and their derivatives are then used in equation (7) to obtain M. 
The final evaluation of the integral is carried out using the same general procedure as 
w a s  used by Baker. The electron scattering form factor is related to the square of M 
divided by the point cross  section. The change in the electron wavelength as the elec- 
tron approaches the scattering center must be accounted for in the calculation of the 
form factor. The correction factor suggested by Ravenhall is used in our calculations 
(ref. 37). 
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TABLE I. - DESCRIPTION O F  BASIS SPACES TO BE USED IN 

H F  CALCULATIONS 

Radial dependence 

Harmonic nsc i l la tor  

Harmonic osci l la tor  

Harmonic osci l la tor  

Wood- Saxon 
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TABLE 11. - COMPARISON OF H F  WAVE FUNCTIONS. SINGLE PARTICLE ENERGIES. HF  ENERGIES. 

AND GAPS FOR NEON-20 

[Oscillator length, 1. 88 fin] 

(a) HF  wave functions and s ingle  pa r t i c l e  ene rg ie s  

Posi t ive par i ty  s t a t e s  Si ti:! le 
pnrt ic l  
energy 

MeV 
5' 

Mag net ic 
quantum 
number  

m 
and par i ty  

7i 

- 1+ 
2 

3 

Negative par i ty  s t a t e s  

2p3,2 
- ___ 

-0.0387 
-0.0446 
-0.0510 

l f 7 , 2  

0.042! 
0.049( 
0.056t 

.. . 

- -  - 

%,'2 

0.1336 
0.1890 
0.2156 

0. 9894 
0.9797 
0. 9710 

0.3173 
0. 3249 
0. 3536 

1 0.9483 
2 0.9315 
3 0.9158 

-38.64 
-44.34 
-46.09 

-19. 16 
-23.08 
-24. 21 

-0.948: 
-0. 926: 
-0.9091 

1.  oooc 
0.9752 
0.9687 

- - - - - - - 
-0.094; 
-0.113C 
. .  

- - - - - - - 
0.0432 
0.0456 

.. __ 

- - - - - - - 
-0.0051 
-0.0088 

0.8008 
0.7977 
0.7697 

- .- 

- 1- 
2 

-15. 52 
.18.43 
.18.45 

11 .55  
13.05 

.12. 72 

__  

-4 .46 
-6.06 
-7. 96 

3- 
2 

_ -  

- 1- 
2 

- - - - - - - 
0.0879 
0.1033 

-0. 3196 
-0. 3165 
-0.3577 

- 

0.0212 
0.0443 
0.0468 _ _  ~ .__ 

- 1+ 
2 

'For  definition of spaces  s e e  table I. 

(b) H F  ene rg ie s  and 
gaps 

Gap. 

MeV 

-36.85 

-40.02 
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TABLE III. - PROJECTED RMS RADIUS AND 

REDUCED E2 RATE 

Osci l la tor  
length, 

b, 

B a s i s  r m s  radius .  Transi t ion r a t e  
B(E2: 0; - 2+) 

(R2)  , e'. f m 4  fm 

1 
2 
3 

I 

I 
3 

I 
- 

I 

I : I  
1 3 1  

fm I I 
Fixed osc i l la tor  length 

109.9 
164.5 

1. 88 2. 73 190.0 

Fixed s i z e  of s p a c e  

174.7 
190.0 

1. 93 2. 78 204.1 

Fixed r m s  radius  

1. 88 164. 5 
1. 93 2. 78 204. 1 

aAverage of projected r m s  rad i i  obtained with 
s p a c e s  and osci l la tor  lengths shown. 

s p a c e s  1 and 3, values  of ( R2) are 2. 79 and 
2. 77 fm,  respectively. This  introduces an  un- 
cer ta inty of about 2 percent  in  predicted E2 
r a t e s .  

For  

TABLE IV. - REDUCED E2 TRANSITION 

RATES WITIIIN GROUND STATE 

BAND O F  NEON-20 

bpace, 3: osci l la tor  length. 
I. 93 fm] 

r- 
T r a n s i -  

tion 

~~ 

0; - 2; 
2; - 4; 
4; - 6; 

Predicted I Experiment 

286: 15 

89: 9 

129t13 
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TAELE V. - COMPARISON O F  HF WAVE FUNCTIONS. SINGLE PARTICLE ENERGIES. HF ENERGIES. 

GAPS. RMS RADII, AND E2 RATES FOR MAGNESIUM-24 

[Oscillator length. 2.09 fm.] 

(a )  HF wave functiuns and single particle energies 

quantum 
number 

- 2  3 

f- 1 :  
1+ 2 
- 2 1 3  

-3+ I 
2 3 

1111 2 

0.9745 
0.9621 

-0.4061 
-0.4356 

- - - - - - - 

0.8884 
0.8629 

2111 2 

0.2073 
0.2370 

-0.0515 
-0.0772 

- - - - - - - 
- - - - - - - 

0.1692 
0.2002 

-0. 5927 
-0. 5398 

'Fur definition of maces  see table I. 

(b) HF  energies and gaps 

1p3 2 

_ _ - - _ _  

0.0672 

0.8900 
0.8642 

0.9655 
0.9550 

0.3948 
0.4252 

_ _ _ _ _ _  
0.1227 

_ _ _ _ _ _  
_ _ _ _ _ _  

-0,0554 _ _ _ _ _ _ _  
-0.0686 -0.0311 

0.1741 -0.0521 
0.2037 -0.0726 

-0. 2413 -0.0597 
-0.2754 -0.0688 

0.1106 0.1064 
0.1295 0.1191 

-0. 3024 _ _ _ _ _ _ _  
-0. 3341 -0.0323 

-0.28231 - - - - - - -  
-0.29211 -0.0245 

l f 7  2 

0.0662 
0.0819 

0.0850 
0.1031 

-0.0773 
-0.0861 

0.0519 
0.0594 

0.7442 
0.7418 

-0.9593 
-0.9347 

(c) rms  radii and E2 rates 

351.9 

3.037 373.9 

Experiment 3.02-tO.03 436i46 

TABLE VI. - REDUCED E2 TRANSITION RATES WITHIN 

GROUND STATE BAND O F  MAGNESIUM-24 

[Space 3: oscillator leng-tti. 2.09 f m j  

ti 011 

0; - 2; 

2; - 4; 

e A .  
MeV 

-39.94 
-44.14 

-23.03 
-26.37 

-17.41 
-18. 40 

-14.98 
-15.69 

-7.40 
-10.14 

-3.45 
-4. 56 
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TABLE VII. - COMPARISON O F  H F  P’AVE FUNCTIONS, SINGLE PARTICLE ENERGIES. HF ENERGIES, 

Posi t ive par i ty  s t a t e s  
’ 

ls1/2 2s1/2 3sl/2 ld3/2 2d3/2 I ‘‘5 2 I 2d5/2 I Ig7/2 I Ig9/2 

Single 
particle 
energy,  

0.1946 
0.2365 

------- 
0.0650 

0.0566 
0.0631 

------- 
0.0312 

-0.0678 
-0.0759 

_ _ _ _ _ _ _  
-0.0363 

-0.1842 
-0.2413 

0.0595 
0.0679 

0.0868 
0.0954 

------- 
- - - - - - -  

0.0856 
0.1335 

0.1395 
0.1782 

0.7461 
0.7128 

-0.6171 
-0.6350 

0.1573 
0.1935 

-0.1701 
-0. 2039 

-0.0633 
-0.0755 

-0.0927 
-0.0955 

-0.0829 
-0.0885 

_ _ _ _ _ _ _  
_ _ _ _ _ _ _  

1,000 
0.9705 

- - _ _ _ _ _  
0.2145 

0.5512 
0.5730 

- - - - - - -  
0.1069 

0.6893 
-0.6846 

- - - - - - -  
-0.1109 

2 3. 336 

3 I 3.096 

Esperinient 3. 08+0. 06 I 

436. 9 

376. 2 

327.17 

Magnetic 
quantum 
number 

m 
md pari ty  

~ 

~ 

~ 

~ 

Negative par i ty  s t a t e s  

I 
2. 
3 

0.9769 
0.9631 

- - - - - - - -42.62 
0.0111 -48.66 , 

2 
3 

0.6328 
0.6505 

0.7482 
0.7155 

- - - - - - - 

-0.1059 
-0.1249 

0.7928 - - - - - - -  
0.7356 0.1770 I 

2 
3 

‘For definition of.spaces s e e  table I. 

(b)  HF ene rg ie s  and gaps 

I E a s i s  I Energy. I Gap, 

-61. 16 
I I I 
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TABLE VIII. - COMPARISON OF RMS RADIUS RADIUS AND REDUCED 

E2 RATES FOR SILICON-28 

[Oscillator length, 2.09 fm]  
- __ 

Trans i t ion  ra te .  e2 . f m 4  - I 
( R )  3 

fm 

i I 

Inver ted  co- 3.092 
ex is tence  
calculation 

Exper iment  3.08*0.06 

- _  ti - ~- 

B(E2; 0; - 2;) 

- - 

376.2 

342.3 

.. . _. - __ 

- 

3 2 7*1'7 
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TABLE M. - COMPARISON O F  HF WAVE FUNCTIONS, SINGLE PARTICLE ENERGIES, HF  ENERGIES, 

GAPS, PROJECTED RMS RADIUS, AND E2 RATES FOR SULFUR-32 (PROLATE) 

[Oscillator length, 2.19 f m j  

(a) H F  wave functions and single par t ic le  ene rg ie s  

-0.0476 
-0.0536 

0.0485 
0.0554 

-0.0590 
-0.0598 

0.0602 
-0.06 58 

1.000 

0.9621 

0.5234 
0.5633 

Magnetic 
quantum 
number  

m 
and pa r i ty  

Ti 

- 1+ 

5- 

- 1- 

2 

- 2  

2 

_ _ _ _ _ _ _  
-0.0262 

- - - - - - -  
- - - - - - -  

_ _ _ _ _ _ _  
_ _ _ _ - - _  

- - - - - - -  
- - - - - - - 

-_ - - - - -  
0.2665 

------- 
0.1327 

;pac 

(a) 

2 
3 

2 
3 

2 
3 

2 
3 

2 
3 

2 
3 

2 
3 

2 
3 

.. - 

'For definition of spaces  s e e  table I. 

(b) H F  ene rg ie s  and gaps  

Posi t ive par i ty  s t a t e s  

ld3/2 I 2d3/2 I ld5/2 I 2d5/2 

Negative pa r i ty  s t a t e s  

2p3/2 

0.0372 
0.0432 

-0.2038 
-0.2786 

0.1636 
0.2051 

-0.1594 
0.2143 

- - - - - - - 
- - - - - - - 

-0.1865 
-0.1911 

0.5437 
0.5557 

-0.8392 
-0. 8003 

( c )  P ro jec t ed  r m s  
and E2 r a t e s  

F a s i s  

2 

3 (prolate)  

3 (oblate) 

Zxperiment 

r m s  r ad ius ,  
1 2  

i R 2 )  , 
fm 

3. 567 

3. 240 

3.246 

3. 23-tO. 07 

idius  

E(E2; 0; - 2;) 

401. 9 

325. 1 

244.2 

2 1;+30 

Single 
par t ic le  

energy, 

MeV 
eA 

-41. 22 
-48,95 

-24. 52 
-29. 59 

-22.62 
-27. 27 

-18.66 
-21.53 

-9.06 
-12.38 

-7.99 
-10.47 

-7.08 
-9.64 

-4.68 
-6 .09  
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, .. .- 

N u c l r u s  

2oNc  

24Mg 

f8Si 

3ZS 

TABLE X.  - COMPARISON OF H F  SINGLE PARTICLE ORBITS IN NEON-20 FOR 

WOOD-SAXON (WS) AND HARMONIC OSCILLATOR (HO) BASES 

D x s i s  

HO 
W' S 

HO 
w S 

HO 
ws 

HO 
\I! s 

quantum 
number 

2 HO 

ws 
1- 2 1 HO 

Is1 2 

0.996$ 
0.9881 

?3/ 2 

_ _ _ _  
_ _ _ -  

. 905 

. 816 

,000 
. 000 

. 425 
, 577 

_-_ -  
_ _ _ _  

TABLE XI. - COMPARISON OF NUCLEAR PROPERTIES WITH 

HARMONIC OSCILLATOR (HO) AND WOOD-SAXON (WS) BASIS 

[Oscillator leiigth. 1. 924 fm.1  

r ins  radius.  
R2 

fni 

3 . 0 1  
2 .  84 

3 .12  
2. 96 

3. 20 
3.09 

3.  25 
3.17 

~ 

Trans i t ion  rat e ,  
F(E2:  0- - 7+). 

e' . fm4 

135 .7  
140. a 

191 .2  
174.4 

269.8 
274.9 

192. 8 
182 .7  

Energy. 

E ~ ~ .  
MeV 
.. . 

-98.37 
-84. 98 

-116.77 
-87. 54 

-160. 15  
-116.03 

-193. 75 
-134. 15  

~ .. - 

Gap. 
A .  

MeV 

8.33 
8.04 

0 .24  
0 .11  

9.11 
8 .62  

0. 24 
0 .22  

.. ~ 

~~ ~ 

Single 
particle 

energy, 

eA 
MeV 

-57.95 
-41.69 

-28.10 
-25.13 

-23.39 
-19.17 

-21.63 
-19.17 

-6.10 
-9.97 
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F igu re  3. - Neon-20 elastic f o rm factor f o r  200-MeV electrons. Comparison 
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lator length, 2. 09 femtometers; proton lab energy, 17. 5 MeV; Q-values, 
1.37 MeV (2+). 
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Figure 20. - Elastic e lect ron fo rm factors  corresponding to d m s i t i e s  in f i g u r e  19. 
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