567 research outputs found
CYP2E1 autoantibodies in liver diseases
Autoimmune reactions involving cytochrome P4502E1 (CYP2E1) are a feature of idiosyncratic liver injury induced by halogenated hydrocarbons and isoniazid, but are also detectable in about one third of the patients with advanced alcoholic liver disease (ALD) and chronic hepatitis C (CHC). In these latter the presence of anti-CYP2E1 auto-antibodies is an independent predictor of extensive necro-inflammation and fibrosis and worsens the recurrence of hepatitis following liver transplantation, indicating that CYP2E1-directed autoimmunity can contribute to hepatic injury. The molecular characterization of the antigens recognized by anti-CYP2E1 auto-antibodies in ALD and CHC has shown that the targeted conformational epitopes are located in close proximity on the molecular surface. Furthermore, these epitopes can be recognized on CYP2E1 expressed on hepatocyte plasma membranes where they can trigger antibody-mediated cytotoxicity. This does not exclude that T cell-mediated responses against CYP2E1 might also be involved in causing hepatocyte damage. CYP2E1 structural modifications by reactive metabolites and molecular mimicry represent important factors in the breaking of self-tolerance against CYP2E1 in, respectively, ALD and CHC. However, genetic or acquired interferences with the mechanisms controlling the homeostasis of the immune system are also likely to contribute. More studies are needed to better characterize the impact of anti-CYP2E1 autoimmunity in liver diseases particularly in relation to the fact that common metabolic alterations such as obesity and diabetes stimulates hepatic CYP2E1 expression
Master Equation for Hydrogen Recombination on Grain Surfaces
Recent experimental results on the formation of molecular hydrogen on
astrophysically relevant surfaces under conditions similar to those encountered
in the interstellar medium provided useful quantitative information about these
processes. Rate equation analysis of experiments on olivine and amorphous
carbon surfaces provided the activation energy barriers for the diffusion and
desorption processes relevant to hydrogen recombination on these surfaces.
However, the suitability of rate equations for the simulation of hydrogen
recombination on interstellar grains, where there might be very few atoms on a
grain at any given time, has been questioned. To resolve this problem, we
introduce a master equation that takes into account both the discrete nature of
the H atoms and the fluctuations in the number of atoms on a grain. The
hydrogen recombination rate on microscopic grains, as a function of grain size
and temperature, is then calculated using the master equation. The results are
compared to those obtained from the rate equations and the conditions under
which the master equation is required are identified.Comment: Latex document. 14 pages of text. Four associated figs in in PS
format on separate files that are "called-in" the LaTeX documen
Submonolayer Epitaxy Without A Critical Nucleus
The nucleation and growth of two--dimensional islands is studied with Monte
Carlo simulations of a pair--bond solid--on--solid model of epitaxial growth.
The conventional description of this problem in terms of a well--defined
critical island size fails because no islands are absolutely stable against
single atom detachment by thermal bond breaking. When two--bond scission is
negligible, we find that the ratio of the dimer dissociation rate to the rate
of adatom capture by dimers uniquely indexes both the island size distribution
scaling function and the dependence of the island density on the flux and the
substrate temperature. Effective pair-bond model parameters are found that
yield excellent quantitative agreement with scaling functions measured for
Fe/Fe(001).Comment: 8 pages, Postscript files (the paper and Figs. 1-3), uuencoded,
compressed and tarred. Surface Science Letters, in press
Scaling of Island Growth in Pb Overlayers on Cu(001)
The growth and ordering of a Pb layer deposited on Cu(001) at 150 K has been
studied using atom beam scattering. At low coverage, ordered Pb islands with a
large square unit cell and nearly hexagonal internal structure are formed. This
is a high order commensurate phase with 30 atoms in the unit cell. From the
measurement of the island diffraction peak profiles we find a power law for the
mean island - size versus coverage with an exponent . A
scaling behavior of growth is confirmed and a simple model describing island
growth is presented. Due to the high degeneracy of the monolayer phase,
different islands do not diffract coherently. Therefore, when islands merge
they still diffract as separate islands and coalescence effects are thus
negligible. From the result for we conclude that the island density is
approximately a constant in the coverage range where the
ordered islands are observed. We thus conclude that most islands nucleate at
and then grow in an approximately self similar fashion as
increases.Comment: 23 pages, 10 Figures (available upon request). SU-PHYS-93-443-375
Evaluation of anti-sars-cov-2 s-rbd igg antibodies after covid-19 mrna bnt162b2 vaccine
(1) Background: The evaluation of anti-spike protein receptor-binding domain (S-RBD) antibodies represents a useful tool to estimate the individual protection against Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection; (2) Methods: We evaluated anti S-RBD IgG levels by indirect chemiluminescence immunoassay on Maglumi 800 (SNIBE, California) in 2248 vaccinated subjects without previous SARS-CoV-2 infection, 91 vaccinated individuals recovered from COVID-19, and 268 individuals recovered from COVID-19 who had not been vaccinated. Among those who were healthy and vaccinated, 352 subjects performed a re-dosing after about 72 days from the first measurement. (3) Results: Anti S-RBD IgG levels were lower in subjects with previous infection than vaccinated subjects, with or without previous infection (p < 0.001). No difference was observed between vaccinated subjects, with and without previous SARS-CoV-2 infection. Overall, anti-RBD IgG levels were higher in females than males (2110 vs. 1341 BAU/mL; p < 0.001) as well as in subjects with symptoms after vaccination than asymptomatic ones (2085 vs. 1332 BAU/mL; p = 0.001) and lower in older than younger subjects. Finally, a significant decrease in anti-RBD IgG levels was observed within a short period from a complete two-dose cycle vaccination. (4) Conclusions: Our results show an efficacy antibody response after vaccination with age-, timeand sex-related differences
On the existence of supersolid helium-4 monolayer films
Extensive Monte Carlo simulations of helium-4 monolayer films adsorbed on
weak substrates have been carried out, aimed at ascertaining the possible
occurrence of a quasi-two-dimensional supersolid phase. Only crystalline films
not registered with underlying substrates are considered. Numerical results
yield strong evidence that helium-4 will not form a supersolid film on {any}
substrate strong enough to stabilize a crystalline layer. On weaker substrates,
continuous growth of a liquid film takes place
Buffer gas cooling and trapping of atoms with small magnetic moments
Buffer gas cooling was extended to trap atoms with small magnetic moment
(mu). For mu greater than or equal to 3mu_B, 1e12 atoms were buffer gas cooled,
trapped, and thermally isolated in ultra high vacuum with roughly unit
efficiency. For mu < 3mu_B, the fraction of atoms remaining after full thermal
isolation was limited by two processes: wind from the rapid removal of the
buffer gas and desorbing helium films. In our current apparatus we trap atoms
with mu greater than or equal to 1.1mu_B, and thermally isolate atoms with mu
greater than or equal to 2mu_B. Extrapolation of our results combined with
simulations of the loss processes indicate that it is possible to trap and
evaporatively cool mu = 1mu_B atoms using buffer gas cooling.Comment: 17 pages, 4 figure
- …