2,043 research outputs found

    Role of defects and impurities in doping of GaN

    Full text link
    We have calculated formation energies and position of the defect levels for all native defects and for a variety of donor and acceptor impurities employing first-principles total-energy calculations. An analysis of the numerical results gives direct insight into defect concentrations and impurity solubility with respect to growth parameters (temperature, chemical potentials) and into the mechanisms limiting the doping levels in GaN. We show how compensation and passivation by native defects or impurities, solubility issues, and incorporation of dopants on other sites influence the acceptor doping levels.Comment: 8 pages, 3 figures, to appear in "The Physics of Semiconductors

    Modeling carbon black reinforcement in rubber compounds

    Get PDF
    One of the advocated reinforcement mechanisms is the formation by the filler of a network interpenetrating the polymer network. The deformation and reformation of the filler network allows the explanation of low strain dynamic physical properties of the composite. The present model relies on a statistical study of a collection of elementary mechanical systems, This leads to a mathematical approach of the complex modulus G* = G' + iG". The storage and loss modulus (G' and G", respectively), are expressed in the form of two integrals capable of modeling their Variation with respect to strain

    First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys

    Get PDF
    In this paper, we report the calculated phase diagrams of V-Nb, V-Ta, and Nb-Ta alloys computed by combining the total energies of 40–50 configurations for each system (obtained using density functional theory) with the cluster expansion and Monte Carlo techniques. For V-Nb alloys, the phase diagram computed with conventional cluster expansion shows a miscibility gap with consolute temperature T_c=1250 K. Including the constituent strain to the cluster expansion Hamiltonian does not alter the consolute temperature significantly, although it appears to influence the solubility of V- and Nb-rich alloys. The phonon contribution to the free energy lowers T_c to 950 K (about 25%). Our calculations thus predicts an appreciable miscibility gap for V-Nb alloys. For bcc V-Ta alloy, this calculation predicts a miscibility gap with T_c=1100 K. For this alloy, both the constituent strain and phonon contributions are found to be significant. The constituent strain increases the miscibility gap while the phonon entropy counteracts the effect of the constituent strain. In V-Ta alloys, an ordering transition occurs at 1583 K from bcc solid solution phase to the V_(2)Ta Laves phase due to the dominant chemical interaction associated with the relatively large electronegativity difference. Since the current cluster expansion ignores the V_(2)Ta phase, the associated chemical interaction appears to manifest in making the solid solution phase remain stable down to 1100 K. For the size-matched Nb-Ta alloys, our calculation predicts complete miscibility in agreement with experiment

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Nuclear structure study around Z=28

    Full text link
    Yrast levels of Ni, Cu and Zn isotopes for 40≤N≤5040 \leq N \leq50 have been described by state-of-the-art shell model calculations with three recently available interactions using 56^{56}Ni as a core in the f5/2pg9/2f_{5/2}pg_{9/2} model space. The results are unsatisfactory viz. large E(2+)E(2^+) for very neutron rich nuclei, small B(E2) values in comparison to experimental values. These results indicate an importance of inclusion of πf7/2\pi f_{7/2} and νd5/2\nu d_{5/2} orbitals in the model space to reproduce collectivity in this region.Comment: 12 pages, 14 figure
    • …
    corecore