117 research outputs found

    Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria

    Get PDF
    The combination of essential oils (EOs) with antibiotics provides a promising strategy towards combating resistant bacteria. We have selected a mixture of 3 major components extracted from EOs: carvacrol (oregano oil), eugenol (clove oil) and cinnamaldehyde (cinnamon oil). These compounds were successfully encapsulated within lipid nanocapsules (LNCs). The EOs-loaded LNCs were characterised by a noticeably high drug loading of 20% and a very small particle diameter of 114nm. The in vitro interactions between EOs-loaded LNCs and doxycycline were examined via checkerboard titration and time-kill assay against 5 Gram-negative strains: Acinetobacter baumannii SAN, A. baumannii RCH, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. No growth inhibition interactions were found between EOs-loaded LNCs and doxycycline (FIC index between 0.7 and 1.30). However, when bactericidal effects were considered, a synergistic interaction was observed (FBC index equal to 0.5) against all tested strains. A synergistic effect was also observed in time-kill assay (a difference of at least 3 log between the combination and the most active agent alone). Scanning electron microscopy (SEM) was used to visualise the changes in the bacterial membrane. The holes in bacterial envelope and leakage of cellular contents were observed in SE micrographs after exposure to the EOs-LNCs and the doxycycline combination

    Community building and knowledge sharing by individuals with disabilities using social media

    Get PDF
    The use of social media to share information, enhance learning, and connect with an online community has grown rapidly over the past 10 years. As social media becomes a more common tool in both formal and informal education, it is imperative to under- stand how it is used by individuals with disabilities. Through a systematic study of the literature, 215 articles on social media used by individuals with disabilities were selected and 29 selected for in‐depth thematic analysis. Six major themes were iden- tified: community, cyberbullying, self‐esteem, self‐determination, access to technology, and accessibility. To confirm these six categories, we expanded our search, yielding an additional 30 articles, for a total 59 articles reviewed in‐depth. Interactions between individuals with disabilities within online communities often had the goal of acquiring knowledge or learning new information. A communities of practice theo- retical framework is used to discuss interactions among the elements of social media design, learning, and the building of community by individuals with disabilities

    Heterogeneous activation of the TGFΞ² pathway in glioblastomas identified by gene expression-based classification using TGFΞ²-responsive genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TGFΞ² has emerged as an attractive target for the therapeutic intervention of glioblastomas. Aberrant TGFΞ² overproduction in glioblastoma and other high-grade gliomas has been reported, however, to date, none of these reports has systematically examined the components of TGFΞ² signaling to gain a comprehensive view of TGFΞ² activation in large cohorts of human glioma patients.</p> <p>Methods</p> <p>TGFΞ² activation in mammalian cells leads to a transcriptional program that typically affects 5–10% of the genes in the genome. To systematically examine the status of TGFΞ² activation in high-grade glial tumors, we compiled a gene set of transcriptional response to TGFΞ² stimulation from tissue culture and <it>in vivo </it>animal studies. These genes were used to examine the status of TGFΞ² activation in high-grade gliomas including a large cohort of glioblastomas. Unsupervised and supervised classification analysis was performed in two independent, publicly available glioma microarray datasets.</p> <p>Results</p> <p>Unsupervised and supervised classification using the TGFΞ²-responsive gene list in two independent glial tumor gene expression data sets revealed various levels of TGFΞ² activation in these tumors. Among glioblastomas, one of the most devastating human cancers, two subgroups were identified that showed distinct TGFΞ² activation patterns as measured from transcriptional responses. Approximately 62% of glioblastoma samples analyzed showed strong TGFΞ² activation, while the rest showed a weak TGFΞ² transcriptional response.</p> <p>Conclusion</p> <p>Our findings suggest heterogeneous TGFΞ² activation in glioblastomas, which may cause potential differences in responses to anti-TGFΞ² therapies in these two distinct subgroups of glioblastomas patients.</p

    Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers

    Get PDF
    Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs

    High inorganic phosphate intake promotes tumorigenesis at early stages in a mouse model of lung cancer

    Full text link
    Β© 2015 Lee et al. Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a highphosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention

    Streptozotocin, Type I Diabetes Severity and Bone

    Get PDF
    As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss

    CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis

    Get PDF
    The CCN family of proteins is composed of six secreted proteins (CCN1-6), which are grouped together based on their structural similarity. These matricellular proteins are involved in a large spectrum of biological processes, ranging from development to disease. In this review, we focus on CCN3, a founding member of this family, and its role in regulating cells within the bone microenvironment. CCN3 impairs normal osteoblast differentiation through multiple mechanisms, which include the neutralization of pro-osteoblastogenic stimuli such as BMP and Wnt family signals or the activation of pathways that suppress osteoblastogenesis, such as Notch. In contrast, CCN3 is known to promote chondrocyte differentiation. Given these functions, it is not surprising that CCN3 has been implicated in the progression of primary bone cancers such as osteosarcoma, Ewing’s sarcoma and chondrosarcoma. More recently, emerging evidence suggests that CCN3 may also influence the ability of metastatic cancers to colonize and grow in bone
    • …
    corecore