42 research outputs found

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed

    An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs

    Full text link
    Genetic diversity in 31 individuals from 14 coconut populations across the entire geographic range (2-3 individuals per population) was assessed using sequence-tagged microsatellites (or simple sequence repeats, SSRs) and amplified fragment length polymorphism (AFLP). From the 39 SSR primer sets tested, only two gave patterns that could not be scored and used in the data analysis. The remainder included five SSRs that gave double-locus profiles in which one locus could still be scored separately. The 37 SSRs revealed between 2 and 16 alleles per locus and a total of 339 alleles in the 14 populations. Gene diversity ranged from 0.47 to 0.90. Two of the four Dwarf populations were homozygous at all 37 loci, which is consistent with their autogamous (self-fertilising) reproduction. One Dwarf population was heterozygous at one locus but the other (Niu Leka Dwarf), which is known to be cross-pollinating, showed high levels of heterozygosity. Generally, diversity was higher in populations from the South Pacific and South East Asia. Three SSR loci (CNZ46, CN2A5, CN 11 E6) gave distinct genotypes for all but two populations. The East African populations had higher heterozygosities than those from West Africa, and the populations from Tonga and Fiji generally had distinct alleles from those of the South Pacific. AFLP analysis with 12 primer combinations gave a total of 1106 bands, of which 303 were polymorphic (27%). Similarity matrices were constructed from the two data sets using the proportion of shared alleles for SSRs and a Jaccard coefficient for AFLPs. In each case cluster and principal coordinates analyses were performed, with the resultant dendrograms and plots revealing similar relationships among the populations for both approaches. There was generally a good separation of populations, and phenetic relationships were in agreement with those previously shown by RFLPs. The use of SSRs and AFLPs in genetic-diversity analysis for the establishment of germplasm collections is discussed. (Résumé d'auteur

    Experiment to measure the Lamb shift in muonic hydrogen

    Get PDF
    Abstract The contribution of the root mean square (RMS) proton charge radius to the Lamb shift (2S–2P energy difference) in muonic hydrogen (”p) amounts to 2%. Apart from the uncertainty on this charge radius, theory predicts the Lamb shift with a precision on the ppm level. We are going to measure ?E (2 S1/2(F=1)–2 P3/2(F=2)) in a laser resonance experiment to a precision of 30 ppm (i.e., 10% of the natural linewidth) and to deduce the RMS proton charge radius with 10-3 relative accuracy, 20 times more precise than presently known. The most important requirement for the feasibility of such an experiment, namely the availability of a sufficient amount of long lived metastable ”p atoms in the 2S state, has been investigated in a recent experiment at PSI. Our analysis shows that in the order of one percent of all muons stopped in low pressure hydrogen gas form a long lived ”p(2S) with a lifetime of the order of 1 ”s. The technical realization of our experiment involves a new high intensity low energy muon beam, an efficient low energy muon entrance detector, a randomly triggered 3 stage laser system providing the 0.5 mJ, 7 ns laser pulses at 6.02 ”m wavelength, and a combination of a xenon gas proportional scintillation chamber (GPSC) and a microstrip gas chamber (MSGC) with a CsI coated surface to detect the 2 keV X rays from the”p(2P ? 1S) transition

    The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    No full text
    International audienceHigher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification inArabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator ofWUSexpression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds toWUSregulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression ofWUSexpression

    Metabolic Cleavage and Translocation Efficiency of Selected Cell Penetrating Peptides: A Comparative Study with Epithelial Cell Cultures

    No full text
    We investigated the metabolic stability of four cell penetrating peptides (CPPs), namely SAP, hCT(9-32)-br, [Pα] and [PÎČ], when in contact with either subconfluent HeLa, confluent MDCK or Calu-3 epithelial cell cultures. Additionally, through analysis of their cellular translocation efficiency, we evaluated possible relations between metabolic stability and translocation efficiency. Metabolic degradation kinetics and resulting metabolites were assessed using RP-HPLC and MALDI-TOF mass spectrometry. Translocation efficiencies were determined using fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM). Between HeLa, MDCK and Calu-3 we found the levels of proteolytic activities to be highly variable. However, for each peptide, the individual degradation patterns were quite similar. The metabolic stability of the investigated CPPs was in the order of CF-SAP = CF-hCT(9-32)-br > [PÎČ]−IAF > [Pα] and we identified specific cleavage sites for each of the four peptides. Throughout, we observed higher translocation efficiencies into HeLa cells as compared to MDCK and Calu-3, corresponding to the lower state of differentiation of HeLa cell cultures. No direct relation between metabolic stability and translocation efficiency was found, indicating that metabolic stability in general is not a main limiting factor for efficient cellular translocation. Nevertheless, translocation of individual CPPs may be improved by structural modifications aiming at increased metabolic stability
    corecore