142 research outputs found

    Planck Observations of M33

    Get PDF
    We have performed a comprehensive investigation of the global integrated flux density of M33 from radio to ultraviolet wavelengths, finding that the data between ∼\sim100 GHz and 3 THz are accurately described by a single modified blackbody curve with a dust temperature of TdustT_\mathrm{dust} = 21.67±\pm0.30 K and an effective dust emissivity index of βeff\beta_\mathrm{eff} = 1.35±\pm0.10, with no indication of an excess of emission at millimeter/sub-millimeter wavelengths. However, sub-dividing M33 into three radial annuli, we found that the global emission curve is highly degenerate with the constituent curves representing the sub-regions of M33. We also found gradients in TdustT_\mathrm{dust} and βeff\beta_\mathrm{eff} across the disk of M33, with both quantities decreasing with increasing radius. Comparing the M33 dust emissivity with that of other Local Group members, we find that M33 resembles the Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31. In the Local Group sample, we find a clear correlation between global dust emissivity and metallicity, with dust emissivity increasing with metallicity. A major aspect of this analysis is the investigation into the impact of fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux density spectrum of M33. We found that failing to account for these CMB fluctuations would result in a significant over-estimate of TdustT_\mathrm{dust} by ∼\sim5 K and an under-estimate of βeff\beta_\mathrm{eff} by ∼\sim0.4.Comment: Accepted for publication in MNRA

    Planck observations of M33

    Get PDF

    New radio observations of anomalous microwave emission in the HII region RCW175

    Get PDF
    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to our spectral coverage and angular resolution, we have been able to derive one of the first AME maps, at 13.5GHz, showing clear evidence that the bulk of the AME arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5GHz of 2.2\pm0.2(rand.)\pm0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.Comment: Accepted for publication in the Astrophysical Journa

    Constraints on Free-Free Emission from Anomalous Microwave Emission Sources in the Perseus Molecular Cloud

    Get PDF
    We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1-5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3σ upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature

    Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data

    Get PDF
    Planck data when combined with ancillary data provide a unique opportunity to separate the diffuse emission components of the inner Galaxy. The purpose of the paper is to elucidate the morphology of the various emission components in the strong star-formation region lying inside the solar radius and to clarify the relationship between the various components. The region of the Galactic plane covered is l = 300° → 0° → 60° wherestar-formation is highest and the emission is strong enough to make meaningful component separation. The latitude widths in this longitude range lie between 1° and 2°, which correspond to FWHM z-widths of 100−200 pc at a typical distance of 6 kpc. The four emission components studied here are synchrotron, free-free, anomalous microwave emission (AME), and thermal (vibrational) dust emission. These components are identified by constructing spectral energy distributions (SEDs) at positions along the Galactic plane using the wide frequency coverage of Planck (28.4−857 GHz) in combination with low-frequency radio data at 0.408−2.3 GHz plus WMAP data at 23−94 GHz, along with far-infrared (FIR) data from COBE-DIRBE and IRAS. The free-free component is determined from radio recombination line (RRL) data. AME is found to be comparable in brightness to the free-free emission on the Galactic plane in the frequency range 20−40 GHz with a width in latitude similar to that of the thermal dust; it comprises 45 ± 1% of the total 28.4 GHz emission in the longitude range l = 300° → 0° → 60°. The free-free component is the narrowest, reflecting the fact that it is produced by current star-formation as traced by the narrow distribution of OB stars. It is the dominant emission on the plane between 60 and 100 GHz. RRLs from this ionized gas are used to assess its distance, leading to a free-free z-width of FWHM ≈ 100 pc. The narrow synchrotron component has a low-frequency brightness spectral index β_(synch) ≈ −2.7 that is similar to the broad synchrotron component indicating that they are both populated by the cosmic ray electrons of the same spectral index. The width of this narrow synchrotron component is significantly larger than that of the other three components, suggesting that it is generated in an assembly of older supernova remnants that have expanded to sizes of order 150 pc in 3 × 10^5 yr; pulsars of a similar age have a similar spread in latitude. The thermal dust is identified in the SEDs with average parameters of T_(dust) = 20.4 ± 0.4 K, β_(FIR) = 1.94 ± 0.03 (> 353 GHz), and β_(mm) = 1.67 ± 0.02 (< 353 GHz). The latitude distributions of gamma-rays, CO, and the emission in high-frequency Planck bands have similar widths, showing that they are all indicators of the total gaseous matter on the plane in the inner Galaxy

    AMI Observations of the Anomalous Microwave Emission in the Perseus Molecular Cloud

    Get PDF
    We present observations of the known anomalous microwave emission region, G159.6–18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159.6–18.5 at microwave wavelengths. By combining these microwave data with infrared observations between 5.8 and 160 μm from the Spitzer Space Telescope, we investigate the existence of a microwave-infrared correlation on angular scales of ~2'. We find that the overall correlation appears to increase toward shorter infrared wavelengths, which is consistent with the microwave emission being produced by electric dipole radiation from small, spinning dust grains. We also find that the microwave-infrared correlation peaks at 24 μm (6.7σ), suggesting that the microwave emission is originating from a population of stochastically heated small interstellar dust grains rather than polycyclic aromatic hydrocarbons

    Using Spinning Dust Emission To Constrain The Abundance Of Very Small Dust Grains In Dense Cores

    Get PDF
    We present the first analysis of using spinning dust emission as a method to characterise the properties of very small interstellar dust grains in dense cores

    IR-correlated 31 GHz radio emission from Orion East

    Get PDF
    Lynds dark cloud LDN1622 represents one of the best examples of anomalous dust emission, possibly originating from small spinning dust grains. We present Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to the north of LDN1622 in a region known as Orion East. A broken ring with diameter g\approx 20 arcmin of diffuse emission is detected at 31 GHz, at \approx 20-30 mJy beam−1^{-1} with an angular resolution of \approx 5 arcmin. The ring-like structure is highly correlated with Far Infra-Red emission at 12−100μ12-100 \mum with correlation coefficients of r \approx 0.7-0.8, significant at ∼10σ\sim10\sigma. Multi-frequency data are used to place constraints on other components of emission that could be contributing to the 31 GHz flux. An analysis of the GB6 survey maps at 4.85 GHz yields a 3σ3\sigma upper limit on free-free emission of 7.2 mJy beam−1^{-1} (\la 30 per cent of the observed flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to be mostly due to dust radiation. Aperture photometry, at an angular resolution of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of IRAS maps and the {\it WMAP} 5-year W-band map at 93.5 GHz. A single modified blackbody model was fitted to the data to estimate the contribution from thermal dust, which amounts to \sim10percentat31GHz.Inthismodel,anexcessof1.52±0.66Jy(2.3σ)isseenat31GHz.Futurehighfrequency 10 per cent at 31 GHz. In this model, an excess of 1.52\pm 0.66 Jy (2.3\sigma) is seen at 31 GHz. Future high frequency \sim100−1000GHzdata,suchasthosefromthePlancksatellite,arerequiredtoaccuratelydeterminethethermaldustcontributionat31GHz.CorrelationswiththeIRAS 100-1000 GHz data, such as those from the {\it Planck} satellite, are required to accurately determine the thermal dust contribution at 31 GHz. Correlations with the IRAS 100 \mumgaveacouplingcoefficientofm gave a coupling coefficient of 18.1\pm4.4 \muK(MJy/sr)K (MJy/sr)^{-1}$, consistent with the values found for LDN1622.Comment: 8 pages, 3 figures, 3 tables, submitted to MNRA
    • …
    corecore