5,802 research outputs found

    An evaluation of Skylab (EREP) remote sensing techniques applied to investigations of crustal structure

    Get PDF
    The author has identified the following significant results. Film positives (70mm) from all six S190A multispectral photographic camera stations for any one scene can be registered and analyzed in a color additive viewer. Using a multispectral viewer, S190A and B films can be projected directly onto published geologic and topographic maps at scales as large as 1:62,500 and 1:24,000 without significant loss of detail. S190A films and prints permit the detection of faults, fractures, and other linear features not visible in any other space imagery. S192 MSS imagery can be useful for rock-type discrimination studies and delineation of linear patterns and arcuate anomalies. Anomalous color reflectances and arcuate color patterns revealed mineralized zones, copper deposits, vegetation, and volcanic rocks in various locations such as Panamint Range (CA), Greenwater (Death Valley), Lava Mountains (CA), northwestern Arizona, and Coso Hot Springs (CA)

    Fish and Game Commission

    Get PDF

    Hearing the grass grow. Emotional and epistemological challenges of practice-near research

    Get PDF
    This paper discusses the concept of practice-near research in terms of the emotional and epistemological challenges that arise from the researcher coming 'near' enough to other people for psychological processes to ensue. These may give rise in the researcher to confusion, anxiety and doubt about who is who and what is what; but also to the possibility of real emotional and relational depth in the research process. Using illustrations from three social work doctoral research projects undertaken by students at the Tavistock Clinic and the University of East London the paper examines four themes that seem to the author to be central to meaningful practice-near research undertaken in a spirit of true emotional and epistemological open-mindedness: the smell of the real; losing our minds; the inevitability of personal change; and the discovery of complex particulars

    Magnetic interaction of Co ions near the {10\bar{1}0} ZnO surface

    Full text link
    Co-doped ZnO is the prototypical dilute magnetic oxide showing many of the characteristics of ferromagnetism. The microscopic origin of the long range order however remains elusive, since the conventional mechanisms for the magnetic interaction, such as super-exchange and double exchange, fail either at the fundamental or at a quantitative level. Intriguingly, there is a growing evidence that defects both in point-like or extended form play a fundamental role in driving the magnetic order. Here we explore one of such possibilities by performing {\it ab initio} density functional theory calculations for the magnetic interaction of Co ions at or near a ZnO \{101ˉ\bar{1}0\} surface. We find that extended surface states can hybridize with the ee-levels of Co and efficiently mediate the magnetic order, although such a mechanism is effective only for ions placed in the first few atomic planes near the surface. We also find that the magnetic anisotropy changes at the surface from an hard-axis easy-plane to an easy axis, with an associated increase of its magnitude. We then conclude that clusters with high densities of surfacial Co ions may display blocking temperatures much higher than in the bulk

    Dynamical density functional theory for the evaporation of droplets of nanoparticle suspension

    Get PDF
    We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on a planar surface, using dynamical density functional theory (DDFT) to describe the time evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive dynamics but does not include the advective hydrodynamics of the solvent, so the model is relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather the fluid-mechanical reasons. The model incorporates the effect of phase separation and vertical density variations within the droplet and the consequence of these on the nanoparticle deposition pattern on the surface. We show how to include the effect of slip or no-slip at the surface and how this is related to the receding contact angle. We also determine how the equilibrium contact angle depends on the microscopic interaction parameters.Comment: 35 pages, 10 figure

    Exceptionally strong magnetism in 4d perovskites RTcO3 (R=Ca,Sr,Ba)

    Full text link
    The evolution of the magnetic ordering temperature of the 4d3 perovskites RTcO3 (R=Ca,Sr,Ba) and its relation with its electronic and structural properties has been studied by means of hybrid density functional theory and Monte Carlo simulations. When compared to the most widely studied 3d perovskites the large spatial extent of the 4d shells and their relatively strong hybridization with oxygen weaken the tendency to form Jahn-Teller like orbital ordering. This strengthens the superexchange interaction. The resulting insulating G-type antiferromagnetic ground state is characterized by large superexchange coupling constants (26-35 meV) and Neel temperatures (750-1200 K). These monotonically increase as a function of the R ionic radius due to the progressive enhancement of the volume and the associated decrease of the cooperative rotation of the TcO6 octahedra.Comment: 4 pages, 3 figure

    Dynamical density functional theory for dense atomic liquids

    Get PDF
    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte

    Enamel of Yalkaparidon Coheni: Representative of a Distinctive Order of Tertiary Zalambdodont Marsupials

    Get PDF
    The enamel of an incisor and a premolar of Yalkaparidon coheni was examined by scanning electron microscopy in fractured and in sectioned, polished surfaces. The enamel of both teeth demonstrated: complete, ovoid and horse-shoe shaped prisms in a Pattern 2 arrangement; a simple parallel prism course; and, enamel tubules in abundance in the premolar but restricted to the innermost enamel in the incisor. Overall, the enamel ultrastructure supports the marsupial affiliation proposed for Yalkaparidon coheni but does not unambiguously ally it with any other order of marsupials. The observation of a significant ultrastructural difference between the anterior and posterior teeth of a marsupial emphasizes the need to sample both if available. In pursuing this, we report here also the lack of tubules in the anterior teeth of the extant Tarsipes rostratus. This together with a similar absence of typical marsupial tubules from the incisor of the extinct Yalkaparidon coheni, would suggest that the wombat is not the only surviving marsupial to have experimented so extensively with this particular structural feature. It is likely that further study will demonstrate an unexpected and relative lack of tubules in the incisor enamel of other fossil Australian marsupials
    corecore