26 research outputs found

    Dust capture and long-lived density enhancements triggered by vortices in 2D protoplanetary disks

    Full text link
    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global simulations of disks with dust, namely 2048x4096 grid points. This allows to study the dust evolution well beyond vortex dissipation. We vary a wide range of parameters, most notably the dust-to-gas ratio in the initial setup varies in the range 10−310^{-3} to 0.10.1. Irrespective of the initial dust-to-gas ratio we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of order unity inside the vortex. We present an analytical model that describes very well the dust capture process inside vortices, finding consistent results for all dust-to-gas ratios. A vortex streaming instability develops which causes invariably vortex destruction. After vortex dissipation large-scale dust-rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of order unity. The rings are long lived lasting as long as the duration of the simulations. They also develop a streaming instability, which manifests itself in eddies at various scales within which the dust forms compact high density clumps. Such clumps would be unstable to gravitational collapse in absence of strong dissipation by viscous forces. When vortices are particularly long lived, rings do not form but dust clumps inside vortices become then long lived features and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex ring.Comment: Preprint version, submitted to the Astrophysical Journal. Due to size constraints on ArXiv, some plots are at low resolution JPEG

    Meridional Circulation of Dust and Gas in the Circumstellar Disk: Delivery of Solids onto the Circumplanetary Region

    Full text link
    We carried out 3D dust+gas radiative hydrodynamic simulations of forming planets. We investigated a parameter grid of Neptune-, Saturn-, Jupiter-, and 5 Jupiter-mass planets at 5.2, 30, 50 AU distance from their star. We found that the meridional circulation \citep{Szulagyi14,FC16} drives a strong vertical flow for the dust as well, hence the dust is not settled in the midplane, even for mm-sized grains. The meridional circulation will deliver dust and gas vertically onto the circumplanetary region, efficiently bridging over the gap. The Hill-sphere accretion rates for the dust are ∌10−8\sim10^{-8} to 10−1010^{-10} MJup/yr\rm{M_{Jup}/yr}, increasing with planet-mass. For the gas component, the gain is 10−610^{-6} to 10−810^{-8} MJup/yr\rm{M_{Jup}/yr}. The difference between the dust and gas accretion rates is smaller with decreasing planetary mass. In the vicinity of the planet, the mm-grains can get trapped easier than the gas, which means the circumplanetary disk might be enriched with solids in comparison to the circumstellar disk. We calculated the local dust-to-gas ratio (DTG) everywhere in the circumstellar disk and identified the altitude above the midplane where the DTG is 1, 0.1, 0.01, 0.001. The larger the planetary mass, the higher the mm-sized dust is delivered and a larger fraction of the dust disk is lifted by the planet. The stirring of mm-dust is negligible for Neptune-mass planets or below, but significant above Saturn-mass.Comment: ApJ accepte

    AGN disks and black holes on the weighting scales

    Full text link
    We exploit our formula for the gravitational potential of finite size, power-law disks to derive a general expression linking the mass of the black hole in active galactic nuclei (AGN), the mass of the surrounding disk, its surface density profile (through the power index s), and the differential rotation law. We find that the global rotation curve v(R) of the disk in centrifugal balance does not obey a power law of the cylindrical radius R (except in the confusing case s = -2 that mimics a Keplerian motion), and discuss the local velocity index. This formula can help to understand how, from position-velocity diagrams, mass is shared between the disk and the black hole. To this purpose, we have checked the idea by generating a sample of synthetic data with different levels of Gaussian noise, added in radius. It turns out that, when observations are spread over a large radial domain and exhibit low dispersion (standard deviation less than 10% typically), the disk properties (mass and s-parameter) and black hole mass can be deduced from a non linear fit of kinematic data plotted on a (R, Rv 2)-diagram. For a deviation higher than 10%, masses are estimated fairly well from a linear regression (corresponding to the zeroth-order treatment of the formula), but the power index s is no longer accessible. We have applied the model to 7 AGN disks whose rotation has already been probed through water maser emission. For NGC3393 and UGC3789, the masses seem well constrained through the linear approach. For IC1481, the power-law exponent s can even be deduced. Because the model is scale-free, it applies to any kind of star/disk system. Extension to disks around young stars showing deviation from Keplerian motion is thus straightforward.Comment: accepted for publication in A&
    corecore