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ABSTRACT

We study the evolution of planet-induced vortices in radially stratified disks, with initial conditions allowing for
radial buoyancy. For this purpose we run global two-dimensional hydrodynamical simulations, using the PLUTO
code. Planet-induced vortices are a product of the Rossby wave instability (RWI) triggered in the edges of a
planetary gap. In this work we assess the influence of radial buoyancy for the development of the vortices. We
found that radial buoyancy leads to smoother planetary gaps, which generates weaker vortices. This effect is less
pronounced for locally isothermal and quasi-isothermal (very small cooling rate) disks. We observed the formation
of two generations of vortices. The first generation of vortices is formed in the outer wall of the planetary gap. The
merged primary vortex induces accretion, depleting the mass on its orbit. This process creates a surface density
enhancement beyond the primary vortex position. The second generation of vortices arise in this surface density
enhancement, indicating that the bump in this region is sufficient to trigger the RWI. The merged secondary vortex
is a promising explanation for the location of the vortex in the Oph IRS 48 system. Finally, we observed a
nonmonotonic behavior for the vortex lifetimes as a function of the thermal relaxation timescale, agreeing with
previous studies. The birth times of the secondary vortices also display a nonmonotonic behavior, which is
correlated with the growth time of the primary vortex and its induced accretion.
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1. INTRODUCTION

High mass planets leave remarkable features in their parent
protoplanetary disks (PPDs), namely a gap, spiral waves,
vortices, and eccentricities. These features are captured in
numerical simulations of planet–disk interactions (e.g., Nelson
et al. 2000; Winters et al. 2003; Klahr & Kley 2006; Kley &
Dirksen 2006; de Val-Borro et al. 2007; Lin &
Papaloizou 2011a, 2011b; Uribe et al. 2011; Ataiee
et al. 2013; Zhu & Stone 2014), and are also expected to be
observationally detectable (Regály et al. 2010, 2014; Pinilla
et al. 2012, 2015; Ruge et al. 2013, 2014; Juhasz et al. 2015).
In this work we are particularly interested in studying the
evolution of planet-induced vortices in buoyantly unstable
disks.

Vortices can be formed in PPDs as a product of a Kelvin–
Helmholtz instability, refereed to as the Rossby wave
instability (RWI) for accretion disks, and/or unstable radial
buoyancy. The RWI can be triggered when there is a local
bump in the inverse potential vorticity profile of the disk
(Lovelace et al. 1999; Li et al. 2000). Radial buoyancy can be
manifested as the baroclinic instability (BI, Klahr & Boden-
heimer 2003), which needs a radially decreasing pressure and
entropy, or in other words, a pressure and entropy gradients
with the same sign. Vortices can be amplified due to the
subcritical baroclinic instability (SBI, Lesur & Papaloi-
zou 2010), which is a nonlinear process. A convective
overstability (CO, Klahr & Hubbard 2014; Lyra 2014) is also
able to amplify vortices, CO is linear phase of SBI. More about
this topic will be discussed in Section 4. Vortices are
interesting structures to be studied, considering that they are

important in the context of planet formation, angular
momentum transport through the dead zone, and type I
migration.
In the context of planet formation, vortices are good

candidates to trap dust grains allowing them to grow to
planetesimal or planets sizes (Barge & Sommeria 1995; Klahr
& Bodenheimer 2006). This scenario is a possible solution for
the radial drift barrier—large dust grains achieve high
velocities toward the central star, making for them impossible
to grow before being accreted (Whipple 1972). However, if the
disk has a pressure bump, the dust grains can get trapped into
this pressure maximum and an anticyclonic vortex is an
example of such maxima (e.g., Bracco et al. 1999; Inaba &
Barge 2006; Varnière & Tagger 2006; Lyra et al. 2009b;
Meheut et al. 2012a; Regály et al. 2012).
Accretion disks need some mechanism to transport angular

momentum outwards, allowing then matter to fall inwards.
Shakura & Sunyaev (1973) introduced an α-disk model to
explain this transport, where viscosity, triggered by some kind
of turbulence, is shown to be an efficient accretion mechanism.
Usually, magnetorotational instability (MRI; Balbus & Haw-
ley 1991) is the most invoked mechanism to explain turbulence
in accretion disks, though in PPDs there is a region, around the
disk’s midplane, where the level of ionization is not high
enough for MRI to take place: the so called dead zone
(Gammie 1996). The problem of angular momentum transport
through the dead zone has been investigated by many authors
(e.g., Klahr & Bodenheimer 2003; Dzyurkevich et al. 2010;
Lesur & Papaloizou 2010; Meheut et al. 2012b). Large-scale
vortices in the dead zone of PPDs can help to transport angular
momentum through that region. Meheut et al. (2012b) studied
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the angular momentum flux carried by Rossby vortices. The
exchange of angular momentum between Rossby waves in the
inner and outer sides of a density bump, leads to a negative net
flux, thus an outward transport of angular momentum.

Vortices may also play a role in the context of type I
migration. Planet cores and low mass planets experience type I
migration (Ward 1997; Tanaka et al. 2002). One of the biggest
issues about type I migration is the fast time scale in which it
happens. Vortices are able to trap not only dust particles but
also planet cores, thus they are able to slow down the type I
migration rate (e.g., Koller et al. 2003; Ou et al. 2007; Li
et al. 2009; Yu et al. 2010; Regály et al. 2013; Ataiee
et al. 2014).

The formation of planet-induced vortices is being explored
thoroughly (e.g., Balmforth & Korycansky 2001; de Val-Borro
et al. 2007; Lyra et al. 2009a; Lin & Papaloizou 2011b; Fu
et al. 2014; Zhu & Stone 2014; Les & Lin 2015). Fu et al.
(2014) studied the long term evolution of vortices depending
on the disk viscosity, disk temperature, and planet mass. They
found critical parameters for the disk viscosity (n = W- r10 p p

7 2 2 )
and temperature ( =h r 0.06p ) that lead to a long vortex
lifetime (∼1Myr). A nonmonotonic behavior with respect to
the viscosity and temperature was found, thus high and low
viscosities/temperatures lead to a faster damping of the
vortices. They concluded also that disks with same viscosity
and temperature, but more massive planets, in their case M5 J ,
can sustain vortices for a longer time. Les & Lin (2015) studied
vortex evolution in terms of different cooling timescales. They
found a non-monotonic dependence of the vortex lifetimes with
the cooling timescales, which is in agreement with Fu et al.
(2014). Moreover, they pointed out the importance of not
considering locally isothermal disks, due to the fact that the
RWI theory was developed for adiabatic disks (Lovelace
et al. 1999; Li et al. 2000).

In addition to the theoretical/numerical stage of this field,
observations with high angular resolution are increasing. The
Atacama Large Millimeter/submillimiter Array (ALMA) is
now giving the capabilities to detect structures which may be
related with unseen planets. Recently, dust asymmetries were
observed in five different systems: LkHa 330 (Isella
et al. 2013), Oph IRS 48 (van der Marel et al. 2013),
HD 142527 (Casassus et al. 2013; Fukagawa et al. 2013),
SAO 206462 (Pérez et al. 2014), and SR 21 (Pérez et al. 2014).
An anticyclonic vortex could be a reasonable explanation for
these asymmetries; however, the definite explanation for these
observations is still under debate (Flock et al. 2015; Pinilla
et al. 2015).

The aim of this work is to study the long term evolution of
planet-induced vortices in buoyantly unstable disks. The paper
is laid out as follows. In Section 2 we describe the planet–disk
model and simulation setups. We describe the general
evolution of our different simulations in Section 3. We discuss
the role that the RWI and buoyancy played for vortex
formation and sustenance in Section 4. We study the
convergence of our results with respect to several factors in
Section 5. We observed the formation of a second generation of
vortices, which arise in a surface density enhancement that is
created beyond the primary vortex position. The formation of
the secondary vortices is discussed in Section 6. The vortex
lifetimes and birth times with respect to different thermal
relaxation timescales is discussed in Section 7. Lastly, in

Section 8 we briefly summarize our results and state our
conclusions.

2. SIMULATIONS

We study the formation and evolution of vortices in the outer
edge of planetary gaps by solving numerically the following
system of hydrodynamical (HD) equations
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where Σ is the gas surface density, v is the velocity, p is the
vertically integrated pressure, Fg is the gravitational potential,
and cs is the sound speed. In order to close the system of
equations, we used an ideal equation of state g= Sp cs

2 , with
g = 1.4.

We considered an inviscid disk, thus no prescribed viscosity
was included. This approximation may influence the vortex
evolution, since previous works showed that the vortex lifetime
is inversely proportional to the magnitude of viscosity (de Val-
Borro et al. 2007; Ataiee et al. 2013; Fu et al. 2014). In this
work, we would like to study the direct influence of the RWI
and radial buoyancy for the development of the vortices.
Therefore we chose to not include a prescribed viscosity. In our
models, the only possible source of viscosity is the turbulence-
triggered viscosity by the hydrodynamical instabilities. Lastly,
we assumed that the barycenter of the system is located at the
star’s center. This simplification is plausible, because the planet
masses considered are not very large (1 and M3 J) neither the
vortices accumulate much mass,7 thus the deviation of the
barycenter with respect to the star’s center should be small.
Nonetheless, this approximation may slightly influence planet-
induced vortex formation, since it eliminates the Lagrange
point L3, in the corotation region, which could change the gap
structure.
We used the planet–disk module for the PLUTO code that is

presented in Uribe et al. (2011). The gravitational potential
includes contributions from the planet and the star, and it is
given by
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where G is the gravitational constant, Mp is the planet mass, Rp

is the planet location, M is the stellar mass and ò is a softening
parameter. It is needed to soften the gravitational potential of
the planet in order to avoid numerical divergence close to the
planet’s location. Moreover, this softening can account for 3D
effects of vertical stratification. We considered this parameter
as being a fraction of the Hill radius  = kRH , with =k 0.6
and =R R M M3H p p

1 3( ( )) . The recommended softening
factor for the planet gravitational potential is of
 = -H H0.6 0.7 (Kley et al. 2012), where H is the disk
scale height. These values can recover 3D effects of vertical

7 We obtained vortices masses up to a few -
M10 4 , integrating the surface

density with respect to the area element inside the vortex region.

2

The Astrophysical Journal, 810:94 (13pp), 2015 September 10 Gomes et al.



stratification. The Hill radius and the disk scale height at the
planet position are similar in our simulations, thus we chose
 = R0.6 H .

The stationary solution of a sub-Keplerian disk was taken as
initial conditions, which in polar coordinates is given by

S = S
b- S⎛

⎝⎜
⎞
⎠⎟

r

r
, 50

0
( )

=
b-⎛

⎝⎜
⎞
⎠⎟c c

r

r
, 6s 0

0

2T

( )

=v 0, 7r ( )

= +
S

¶
¶

fv v
r p

r
, 8K

2 ( )

where S0 is the initial surface density at =r 10 AU, b =S 1.5
is the slope for the power law distribution of surface density,
b =2 0.5T is the slope for the power law distribution of sound
speed, vK is the Keplerian velocity, and
= = =h c v H r 0.05s K is the initial aspect ratio and fix

the intial sound speed c0 at =r 10 AU, since vK at =r 10 AU is
set as one.

The planet is set up as a point mass in a given position Rp

and with a given mass Mp. In order to avoid an initial big
disturbance to the disk, we added the planet slowly along its
first Keplerian orbit, according to the following
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where t is the global time and p= -P GM R2 p
3 2( ) is one

planetary orbit. Thus, while <t T the planet mass slowly
increases toward Mp.

The planet initial velocity is assumed to be the Keplerian
velocity =fv GM Rp p, and the initial acceleration coming
from the gravitational interaction with the star and the disk is
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where dA is the area element and ξ is a factor that soften the
contribution of the disk gravity in the Hill sphere and is given
by
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Lastly, the planet position, velocity, and acceleration
changed according to the dynamical interaction with the star-
disk system. Its acceleration changes with time following
Equation (10) and its position and velocity are then updated
using a leapfrog integrator.

2.1. Thermal Relaxation

In order to account for radiative effects, we applied cooling
to the system. We modeled this cooling via thermal relaxation,
following the approach below

t
= -

-dT

dt

T T

r
, 12

0( )
( )

( )

where T is the temperature, T0 is the initial temperature
(equilibrium temperature as result of irradiation), and t r( ) is
the relaxation timescale, which depends on radius
(t pt= Wr r2( ) ( )). This approach tends to reestablish the
equilibrium temperature profile, after the planetary gap is
opened and the system reaches a steady state.
Instead of adding cooling as a source term in the energy

equation, we updated the temperature at each time step
according to Equation (12). Numerically it corresponds to

t
= -

D
-T T

t

r
T T , 13new old old 0( )( )

( )

where T new is the relaxed temperature, T old would be the
temperature we get from the solution of the energy equation,
andDt is the time step. We solve Equation (3), which describes
conservation of energy, considering pressure as an independent
variable. Hence, we had to convert Equation (13) from
temperature to pressure dependent, for which we used the
relation µ ST p , leading to

t
= -
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where pnew is the new pressure from the relaxed temperature,
pold is the pressure we get from the solution of Equation (3), p0

is the initial pressure, Snew is the density we get from the
solution of Equation (1) and S0 is the initial density. Finally,
we cooled the disk through Equation (14). For the locally
isothermal setups, instead of using Equation (14) to cool the
disk, we setup the sound speed to its initial profile at every time
step, in order to guarantee locally isothermality.

2.2. Numerical Setup

The simulations were carried out using the finite volume
Godunov-type code PLUTO (Mignone et al. 2007). Spacial
integration and time evolution were performed using the
piecewise parabolic method and second order Runge–Kutta
schemes, respectively. The Harten–Lax–van Leer-Contact
Riemann solver was used to compute the numerical fluxes
and the Strang operator splitting method to solve the equations
in multi-dimensions.
The HD equations were solved in a two-dimensional domain

considering polar coordinates. A logarithmic grid was used for
the radius and a uniform one for azimuth. The system was
integrated from 0.25 to 4.0 AU in radius and from 0 to p2 in
azimuth. Temporal evolution was taken up to 5000 orbits.
Reflective boundary conditions were used in the radial
direction and periodic conditions in the azimuthal direction.
Distances are given in units of 1 AU; surface densities in units
of S = -

M10 AU0
4 2, which corresponds to a disk mass of

M0.002 inside the domain considered, therefore it is plausible
to neglect disk self-gravity, since the Toomre parameter is

> >Q 1 everywhere in the disk; and velocities in units of
Keplerian speed at 1 AU. Table 1 summarizes the simulations
parameters.

3. GENERAL EVOLUTION

In this section we describe the system evolution for our
simulations. First, we present the results for the simulations
with a M1 J planet mass, varying the thermal relaxation
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timescales. Second, we present the results for the isothermal
simulations, considering M1 J and M3 J planet masses.

3.1. Non-isothermal Cases

The first set of results presented are the cases with a M1 J
planet and different thermal relaxation timescales. The different
values of tW 8 considered and their labels can be seen in
Table 1. All the simulations presented a similar behavior,
which we describe hereafter.

The formation of spiral waves takes place during the first
planetary orbit. Additionally, during the first tens of orbits the
planet carves out a very noticeable gap and small vortices are
formed in the outer edge of this gap. In the first hundreds of
planetary orbits these small vortices merge into a bigger one.
Some mass remains in the gap region even after a few
thousands of orbits, which can be related to the inviscid and/or
non-barycentric approximations. The inviscid approximation
may influence the efficiency of mass transport. Nonetheless,
neglecting the indirect potential exerted on the disk due to the
barycenter shift also seems to retain mass in the gap region,
even for non-inviscid disks (see Figure 2 in Zhu & Stone
2014). In the first thousands of planetary orbits a surface
density enhancement appears beyond the vortex position.
Accumulation of mass persists and a second vortex is formed in
this region. The primary vortex is damped in different
timescales for the different tW ʼs, nonetheless some material
remains in a ring-shape form in between the planetary gap and
the secondary vortex. This material is also dispersed out in
different timescales.

Simulations TR001 and TR01 present a secondary vortex
very similar to the primary one. Figure 1 shows the system
evolution for TR01. Simulations TR1, TR2, TR5, and TR10
present also a secondary vortex; however, the new vortex is
highly spread in the azimuthal direction. Figure 2 shows the
potential vorticity at 5000 orbits for the different tW ʼs. For
tW = 0.01, the secondary vortex survives until the end of the

simulation; however, the vortex gets spread along the
azimuthal direction. For tW = 0.1, the secondary vortex
survives and does not get spread in the azimuthal direction. For

tW 1.0, the secondary vortex is mostly damped by the end
of the simulation interval.

3.2. Isothermal Cases

Here we present the results for the isothermal setup and
planet masses of M1 J and M3 J . The simulations labels are
presented on Table 1.
The isothermal configuration shows a considerably similar

behavior as the models with thermal relaxation. For the
ISO1MJ simulation, the sequence of events is the same. We
first observe the formation of spiral waves, followed by planet
gap opening, and production of small vortices at the outer edge
of this gap. The small vortices gather together and merge into a
bigger one. A surface density enhancement appears beyond the
primary vortex position. Material is accumulated at this
location and a second vortex arises, this structure gets spread
in the azimuthal direction with time. The primary vortex gets
damped and the material in between the planetary gap and the
secondary vortex disperses out. The timescales for the events
are similar to the ones for the non-isothermal cases.
The ISO3MJ simulation presents a similar sequence of

events, with the difference that two vortices, that do not merge
with time, are created in the outer edge of the planetary gap.
The evolutionary timescales for which different structures form
are also different. The surface density enhancement appears in
hundreds of planetary orbits, instead of thousands. The
damping of the primary vortices is also faster. Pile-up of
material at the surface density enhancement also happens.
Nonetheless, it takes thousands of planetary orbits for a
secondary vortex to arise. After a few thousands of planetary
orbits the material between the planetary gap and the secondary
vortex is totally dispersed out, and a much wider gap is settled.
Figure 3 shows the system evolution for simulation ISO3MJ.
It was not possible to consider a higher planet mass (e.g.,
M10 J) under the setup assumed, because the gap created is

much wider, which makes the disk size considered too small.
To solve the same structures in a bigger disk, we would need to
use more grid cells.

4. VORTEX FORMATION AND EVOLUTION

In a protoplanetary disk, we know that vortex formation can
happen as a product of the RWI (Lovelace et al. 1999; Li
et al. 2000) and/or radial buoyancy (Klahr & Bodenhei-
mer 2003; Lesur & Papaloizou 2010; Klahr & Hubbard 2014).
In this work, we considered initially buoyantly unstable disks.
Nonetheless, we know that the presence of a planetary gap
naturally triggers the RWI, due to the sharp surface density
gradient that is created in the gap edges. Hereafter, we discuss
the role that the RWI and radial buoyancy played for the
formation and evolution of planet-induced vortices. We would
like to remember that we are using an inviscid approximation,
thus any viscosity in the system is turbulence-triggered
viscosity by the hydrodynamical instabilities. We chose to
consider an inviscid approximation to assess the direct
influence of radial buoyancy and the RWI for the vortices
evolution.

4.1. Rossby Wave Instability

The RWI is a pressure driven instability for rotating systems,
which is composed of non-axisymmetric modes. The RWI is
triggered when there is a local maximum in the radial profile of
the function (Lovelace et al. 1999)

 º gr r S r , 152( ) ( ) ( ) ( )

Table 1
Simulations Parameters

Label Mp
a Rp

b τc fN N,r( )d

MJ( ) (AU) ( p W2 o)

TR001 1.0 1.0 0.01 (512, 1024)
TR01 1.0 1.0 0.1 (512, 1024)
TR1 1.0 1.0 1.0 (512, 1024)
TR2 1.0 1.0 2.0 (512, 1024)
TR5 1.0 1.0 5.0 (512, 1024)
TR10 1.0 1.0 10.0 (512, 1024)
ISO1MJ 1.0 1.0 0.0 (512, 1024)
ISO3MJ 3.0 1.0 0.0 (512, 1024)

Notes.
a Planet mass in terms of Jupiter mass (considering  = M M ).
b Planet location in AU.
c Thermal relaxation timescale in orbital units.
d Numerical resolution in the radial (Nr) and azimuthal ( fN ) directions.

8 Hereafter, we refer to t r( ) as tW .
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Figure 1. Evolution of the surface density perturbation (top panel) and the potential vorticity with the Keplerian profile subtracted (bottom panel). The color bar for the
potential vorticity plots was truncated from -0.5 to 0.5, in order to provide a higher contrast. The results show simulation TR01.

Figure 2. Final potential vorticity with the Keplerian profile subtracted for the different tW ʼs considered.
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where  = ´ S- v z1 ( ) · ˆ is the potential vorticity9 and
= SgS p is an equivalent to the entropy. Physically, this

condition can be achieved at the edge of planetary gaps (de
Val-Borro et al. 2007) and the edge of dead zones due to sharp
viscosity transitions (Lyra & Mac Low 2012).

The formation of vortices as a product of the RWI has been
studied by many authors. The growth rate of the instability for
2D disks was studied by Li et al. (2000) and Umurhan (2010),
using different approximations, and in 3D stratified disks by
Meheut et al. (2012b) and Lin (2012b). The nonlinear phase of
the instability was explored by Meheut et al. (2013). Despite
the theory for the RWI was developed for adiabatic disks (Li
et al. 2000), most of the works used locally isothermal disks to
study the formation and evolution of planet-induced vortices
(Balmforth & Korycansky 2001; de Val-Borro et al. 2007; Lyra
et al. 2009a; Lin & Papaloizou 2011b; Fu et al. 2014; Zhu et al.
2014). Just recently, Les & Lin (2015) made a breakthrough
and added an artificial source of cooling and heating to explore
the non-isothermal behavior. In this context, our work is a
second step to the process of understanding the non-isothermal
scenario.

It is not in the scope of this work to make an extensive study
of the growth and decay of the RWI, since this matter was
already addressed by Les & Lin (2015) for a physical scenario
very similar to ours. In order to have just a qualitative insight,
we analyzed the spacetime evolution of the potential vorticity
(ζ) averaged in azimuth. Figure 4 shows the result for
simulation TR01.

The blue region in Figure 4 represents a minimum in ζ. A
minimum in ζ is equivalent to a maximum in (Equation (15)),
sufficient condition to trigger the RWI. This minimum is
achieved in both, the outer edge of the planetary gap and at the
surface density enhancement outwards the primary vortex
position. Therefore, the RWI has been triggered in both
regions. The presence of the minimum is maintained along the
whole simulation interval. In the planetary gap edge, its value
slowly increases with time, which explains the vortex decay. In
the surface density enhancement outwards the primary vortex
position, its value is kept slightly constant with time, which

Figure 3. Evolution of the surface density perturbation (top panel) and the potential vorticity with the Keplerian profile subtracted (bottom panel). The color bar for the
potential vorticity plots was truncated from -0.5 to 0.5, in order to provide a higher contrast. The results shows simulation ISO3MJ.

Figure 4. Spacetime evolution of the potential vorticity (ζ) averaged in azimuth
for simulation TR01. The Keplerian profile was subtracted. The color bar was
truncated from -1.0 to 1.0 in order to obtain a higher contrast.

9 Hereafter, called as ζ instead of -1.

6

The Astrophysical Journal, 810:94 (13pp), 2015 September 10 Gomes et al.



explains the survival of the secondary vortex until the end of
our simulation. The spacetime evolution of ζ is similar for all
the cases. A local minimum is observed in the regions of the
primary and secondary vortices. The main differences are the
size of the blue regions (local minimums), the time the local
minimum related the primary vortex starts to decay, and the
time the local minimum related to the secondary vortex
appears.

4.2. Radial Buoyancy

The necessary ingredients for a CO and SBI are: (i) radial
pressure and entropy gradients possessing the same sign (radial
buoyancy) and (ii) thermal relaxation, with maximum ampli-
fication for tW  1.0. The formation of vortices due to the BI
was first observed by Klahr & Bodenheimer (2003). Further
studies by Petersen et al. (2007a, 2007b) showed the
importance of thermal relaxation for baroclinic vortex ampli-
fication. They found that thermal relaxation or diffusion,
besides entropy gradient, are required to keep the instability in
action. Lesur & Papaloizou (2010) studied baroclinic vortex
amplification through the growth of existing vortical perturba-
tions. In order to not cause confusion between the generation of
vortices by the classical BI and amplification of the vortices in
a radial buoyant fluid, they coined this process a SBI. A
parametric study covering the important ranges of entropy
gradients, thermal diffusion timescales, and thermal relaxation
timescales for PPDs was carried out by Raettig et al. (2013).
They showed the importance of baroclinic effects even for
small entropy gradients, which is the case in PPDs. Klahr &
Hubbard (2014) found a linear amplification of epicyclic
oscillations in radially stratified and vertically unstratified
disks, which they called convective overstability. This
phenomenon can be regarded as the linear phase of the SBI.
Yet not much efforts were made to study how vortex formation
and amplification proceeds in a buoyantly unstable disk with a
high mass planet embedded. Les & Lin (2015) discussed
briefly whether an axisymmetric instability was at play in their
simulations of planet induced vortices; however, they con-
cluded that only the RWI was in action.

We can quantify the radial stability in a disk with regards to
convection through the Brunt–Väisälä frequency (N), which is
given by (Raettig et al. 2013)

b b
g

= - W⎜ ⎟⎛
⎝

⎞
⎠N

H

r

1
, 16p S

2
2

2 ( )

where bp is the pressure gradient, bS is the entropy gradient,
and Ω is the angular velocity. Positive values of N2 indicate
stability. The entropy gradient for a 2D vertically integrated
disk is given by

b b g b= + - S1 , 17S T ( ) ( )

where bT is the temperature gradient and bS is the surface
density gradient. We made the choice for the initial surface
density and sound speed gradients in a way that it gives an
initial negative value for N2 equals to -0.0018, thus favoring
instability.

Figure 5 shows the spacetime evolution of WN 2 2 averaged
in azimuth for simulation TR01. We plot WN 2 2 instead of N2,
to eliminate the dependence with the angular velocity. SinceW2

is always positive, W >N 02 2 still indicates stability. We can
see that in the outer disk N2 is kept negative and roughly equals

to its initial value, with exception for the outer boundary. The
outer radial extent with negative N2 becomes narrower
throughout the simulation interval, thus the evolution of the
system tends to stabilize the disk with respect to buoyancy. In
the gap region and outer gap wall, N2 becomes positive after a
few tens of planetary orbits; however, there is a strip around the
primary vortex position with smaller values of N2. The strip’s
center possesses negative N2 in the first tens of planetary orbits,
but N2 turns positive later on. From ∼600 orbits, N2 becomes
negative again in the central position of the vortex. The region
with negative N2 is not as large as the vortex size, thus
buoyancy is not playing a major role for the evolution of the
primary vortex. N2 is positive in the region where the second
generation of vortex appears, until the time that the secondary
vortex arises and a strip with negative N2 appears around the
secondary vortex position. Once more, the strip width is
smaller than the vortex size, indicating that buoyancy may not
be playing a major role in the location of the vortex.
The behavior of N2 for the other cases is similar to the one of

TR01, with exception for TR001 and the isothermal cases. For
them, N2 becomes positive in the first tens of planetary orbits
and remains positive along the whole simulation interval. This
indicates that buoyancy does not play any role for the quasi-
isothermal and isothermal cases. Reinforcing the findings of
Petersen et al. (2007a, 2007b), in the lack of thermal relaxation
or diffusion, buoyancy is not sustained. For tW 1.0, the strip
around the position of the primary vortex has negative N2

during a larger fraction of the primary vortex lifetime. The strip
around the secondary vortex is wider, indicating that buoyancy
had more importance for the secondary vortex evolution than in
the case that tW < 1.0.
To check the impact that buoyancy has in the results, we

used a model where the initial N2 is positive. We run the new
simulation with the same physical and numerical setup as for
the TR01 case, but changing the surface density gradient from
b =S 1.5 to b =S 3.0. The general evolution of the system was
very similar to the case where N2 is initially negative. Two
major differences were noticed. The first is regarding the
maximum amplitudes that the primary and secondary vortices
achieve, which is higher for the case where N2 is initially
positive. The second is regarding the second generation of
vortices. For the >N 0ini

2 case, two vortices arise in the surface

Figure 5. Spacetime evolution of WN 2 2 averaged in azimuth for simulation
TR01. The color bar was truncated from WN1.5 2 2

ini( ) to - WN0.5 2 2
ini( ) , in

order to provide a higher contrast.
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density enhancement region and take more time to merge
(∼1000 orbits against ∼500 orbits for the reference case). The
secondary merged vortex has also an aspect ratio much smaller
than the secondary vortex for the <N 0ini

2 case. Figure 6
presents a comparison of the surface density profiles for the Nini

2

positive and negative cases, for two different points in time
(t= 250 orbits and t= 2500 orbits).

The planetary gap structure is very similar for the different
surface density slopes, the same width and lower level for the
depth are observed, as well as the same location for the
maximum and minimum surface density perturbations. The
standing difference is the sharpness of the surface density
gradient in the planetary gap edge and at the surface density
enhancement beyond the primary vortex position. A larger
gradient produces stronger vortices, therefore the vortices for

>N 0ini
2 are stronger. The times chosen to compare the cases

represent a moment the vortices are totally merged. The
spacetime evolution of WN 2 2 for b =S 3.0 (Figure 7) shows
that N2 becomes negative in the first tens of orbits in the region
where the primary vortices arise; however, it becomes positive
again and local buoyancy disappears for hundreds of orbits, N2

becomes negative again from ∼700 orbits. The strip with
negative N2 around the vortex position is again not as wide as
the vortex size, indicating that buoyancy is not playing a major
role for the evolution of the primary vortex. Nonetheless, this
shows that initially buoyantly stable disks can undergo an
inversion of sign for the entropy gradient, therefore turning on
instability. In the secondary vortex region, N2 never turns to be
negative. The RWI is the only responsible for the formation
and sustenance of the secondary vortex.

This result demonstrates that when we have the RWI and
buoyancy acting at the same time, weaker vortices are
produced. Therefore, buoyancy opposes vortex amplification
and survival, in this scenario. Taking into account that these
processes provide viscosity to the system, once we have both in
action more viscosity is produced. More viscous disks carve

out smoother gaps, leading to the weaker vortices. It should
also be noticed that for tW 1.0, the secondary vortices get
damped during the simulation interval, those are also the cases
for which buoyancy plays some role for the secondary vortex
evolution.

5. CODE CONTROL

In this section, we explore the numerical factors that could
influence the physical validity of our simulations. The tests
were done using the TR01 case as reference. The physical
conditions and numerical setup were exactly the same as for
TR01, varying only what we following mention. We checked
the convergence of the results considering a higher numerical
resolution. We analyzed whether our reflecting boundary
conditions for the radial direction may have reflected waves,
influencing the evolution of the system. A different way to
prevent boundary effects is to push the outer disk to a larger
radius, hence we also used this approach to check whether the
disk size influenced the results. Lastly, we added the
planet along a larger number of planetary orbits to analyse
whether the initial planet disturbance could have been too
large, generating fake effects.
For the numerical resolution test, we doubled the resolution

from (Nr, fN ) = (512, 1024) to (Nr, fN ) = (1024, 2048). The
temporal evolution was taken up to 1000 planetary orbits. The
full temporal evolution was not checked, because the doubled
resolution is numerically highly expensive. For the boundary
conditions test, we first changed the inner and outer radial
boundary conditions from reflective to non-reflective, second
we considered a larger disk extending from 0.25 to 8 AU.
Finally, aiming to check the effect of the initial planet
disturbance to the disk, we made two tests: slowly adding the
planet along its first 10 and 100 orbits, following Equation (9),
in the reference case the planet was slowly added along its first
orbit. The temporal evolution for the last four tests was taken
up to 5000 planetary orbits.
We compare our test cases with the reference case using their

surface density profiles at the latest snapshot. Figure 8 presents
these profiles for t = 1000 orbits (numerical resolution
comparison) and t = 5000 orbits (other comparisons). We
observed a good agreement for the surface density profiles,
indicating that the simulation results were not much influenced

Figure 6. Surface density profiles averaged in azimuth. The red dashed line
shows N2 initially negative, whereas the slate blue dot–dashed line N2 initially
positive.

Figure 7. Spacetime evolution of WN 2 2 averaged in azimuth for the
simulation with >N 0ini

2 . The color bar was truncated from - WN 2 2
ini( ) to

WN 2 2
ini( ) , in order to provide a higher contrast.
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by these factors. Nonetheless, for the resolution test, the outer
gradient that leads to the second generation of vortices is
slightly smoother than for the standard case.

For the boundary condition test, in the outer disk ( r 3AU)
the material is emptied out, due to the boundary choice;
however, the main results agree with the standard case. The
major difference is regarding the secondary vortex, for the
standard case a secondary merged vortex is created, in this case
two secondary vortices are created and they do not merge until
the end of the simulation. The two secondary vortices, for the
non-reflecting radial boundaries, are right opposite to each other
in the azimuthal direction and they have about the same strength.
We speculate that the flow in the corotation region of these
vortices is not being able to push them together, exactly because
the vortices have same strength and are located right opposite to
each other, leading to a stable configuration. For the larger disk
size, the standing difference is regarding the local minimum
between the surface density bumps, where the primary and
secondary vortices sit. For the standard case, the local minimum
is still present by the end of the simulation. For the larger disk
size, this local minimum has disappeared by the end of the
simulation, meaning that the matter is dissipating slightly faster.

For the planet being added along the first 10 orbits, the
primary small vortices merge in a faster timescale, and the
vortices amplitudes take a longer time to grow than for the
standard case. For the planet being added along the first 100
orbits, the vortices amplitudes take also a longer time to grow
than for the standard case. Higher planet masses can excite
stronger vortices (Fu et al. 2014), thus when the planet
perturbation is added slower, the vortices will also take a longer
time to grow.

6. SECOND GENERATION OF VORTICES

The most interesting result of our simulations is the second
generation of vortices. A surface density enhancement was
observed beyond the primary vortex position for all the cases.
This bump is enough to trigger the RWI outside the primary
vortex radius and to form a second generation of vortices. As it
was discussed before, we observe a minimum for ζ in the
region of the secondary vortex for all the cases. Also, there are
strips of negative N2 in the region of the secondary vortex, with
exception for the TR001 and the isothermal cases. Once more,
the action of the RWI together with buoyancy controls the
vortex evolution. For the TR001 and isothermal cases, the RWI
is solely responsible for the secondary vortex. We already
established that our results were not affected by the choice of
boundary conditions, resolution, or the planet perturbation
being too sharp. Therefore, it confirms the physical origin of
the second generation of vortices. No further density enhance-
ment (strong enough to keep triggering the RWI) beyond the
secondary vortex position was observed, even for the test
simulation with a larger disk, thus we do not expect a third
generation of vortices.

6.1. The Origin of the Secondary Vortex

Accumulation of mass is observed at the inner boundary for
all the cases. Our understanding is that the primary vortices
produce an effective α-viscosity that is large enough to induce
accretion in the disk in the timescales we simulate. Therefore
mass is flowing from the region of the primary vortex to the
inner disk. The depletion of mass in the orbit of the primary
vortex position looks like a gap carved out by the primary
vortex. In fact, the outer wall of the planetary gap is moving
outwards due to this depletion of mass. For instance, for the
ISO3MJ case, by the end of our simulation all the mass in the
orbit of the primary vortex was already depleted and the
planetary gap became wider in its outer side. Figure 9 presents
the inner disk mass as a function of time for simulation TR01,
where the increase of the mass is demonstrated.
The faster mass increase happens in the first tens of orbits,

when the planet still carving out its gap. During this period, the
mass increase is mostly due to the planetary gap opening
process. The inner disk mass is being pushed from r = 1 AU to
the inner parts of the disk. For t 100 orbits, the mass increase
is most likely due to accretion induced by the primary vortex.
Our simulations assumed an inviscid disk, therefore any

Figure 8. Surface density profiles (averaged in azimuth) at 1000 orbits (top
panel) and 5000 orbits (bottom panel). The top panel presents the comparison
for the numerical resolution test. The red solid line shows the reference case,
whereas the slate blue dot–dashed line the numerical resolution test. The
bottom panel presents the comparison for the other cases. The red solid line
shows the reference case, the goldenrod dotted line shows the boundary
conditions test, the green dashed line shows the disk size test, the slate blue
dot–dashed line shows the planet disturbance test (the planet was added during
its first 10 orbits), and the violet triple-dot–dashed line shows the planet
disturbance test (the planet was added during its first 100 orbits).

Figure 9. Inner disk mass as a function of time for simulation TR01. We
consider  r0.25 AU 0.75 AU as the inner disk.
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viscosity is produced by the hydrodynamical instabilities,
which in this case could be named a vortex-induced viscosity.
We can obtain an estimate of the α-parameter, using the f-r
component of the Reynolds stress and the local sound speed
(Flock et al. 2011). For simulation TR01, the α-parameter
averaged in space and time (until the time the secondary vortex
appears) was a ´ - 3 10 3, a value in the range of what is
typically obtained by the MRI, a = - -10 104 2– (Dzyurkevich
et al. 2010). The other simulations presented values in the
range from a = - -10 104 2– , in agreement with MRI. The
lowest value obtained was a ´ - 6 10 4, for TR1, and the
highest value was a ´ - 1 10 2, for TR5. Large-scale
vortices are able to transport angular momentum outwards,
because a negative angular momentum flux is obtained from
the balance between the angular momentum carried by Rossby
waves in the inner and outer sides of a surface density bump
(Meheut et al. 2012b).

In this work we assumed that the barycenter of the system is
located at the star’s center. This approximation could influence
the gap structure, since the Lagrange point L3, in the corotation
region of the planet, is removed. Changes in the gap structure
may affect the primary vortex generation, subsequently
possibly impacting the second generation of vortices. This
assumption summed to the inviscid disk approach are two
factors that could influence the formation of a second
generation of vortices. We suggest that further studies should
check these factors.

6.2. Pressure Bumps

Vortices are able to trap dust particles, because they are local
pressure bumps. The particles are attracted to the highest
pressure region, thus to the vortex center. The secondary vortex
becomes extensively spread in the azimuthal direction for

tW 1.0 and =M M3p J . In order to make sure that these

nonaxisymmetric structures can still trap dust particles, we
checked their pressure profiles. Figure 10 shows a radial cut of
the pressure for f equals to the vortex center and an azimuthal
cut of the pressure for r equals to the vortex center. We show
the cases of tW = 10.0 and =M M3p J , since these are the
simulations that present the most spread vortices in the
azimuthal direction. We can observe a pressure bump in both
radial and azimuthal directions; however, in the azimuthal
direction the bump of ISO3MJ is very smooth. Birnstiel et al.
(2013) showed that a very smooth pressure bump in the
azimuthal direction is still sufficient to trap mm and cm
particles in the vortex center. Therefore the secondary vortices
should be able to trap dust particles, leading to an asymmetric
global dust distribution.

6.3. Oph IRS 48

The system Oph IRS 48 is a good candidate to host a vortex-
like structure induced by a planet (van der Marel et al. 2013).
The continuum emission ALMA observations at 0.44 mm
revealed a high-contrast asymmetry in the disk of this system,
which was interpreted as existing due to the presence of an
anticyclonic vortex (van der Marel et al. 2013). Besides, this
system shows a central cavity in CO line observations, which
was explained as a gap opened by a massive planet (Brown
et al. 2012). van der Marel et al. (2013) ran a FARGO
simulation considering the parameters of this system to get the
gas density distribution. Later on the result from the HD
simulation was used as the initial condition in a dust evolution
code to get the expected continuum emission. They were able
to roughly reproduce the ALMA observation; however, there is
a debate regarding the location of the vortex. If the planet is
located at 20 AU, the vortex is expected to be located at most at
∼45 AU, nonetheless it is located at ∼63 AU.
We run a simulation using the same setup as van der Marel

et al. (2013), with the difference that here no viscosity was
included, but instead we used thermal relaxation, and initialized
the disk with H r constant. We observed vortex formation at
the outer edge of the planetary gap, the vortex position is
roughly 40 AU; however, we did not observe a second
generation of vortices. The disk considered was much larger
(from 2 to 150 AU) than the one of our benchmark cases (from
0.25 to 4.0 AU), therefore the resolution may not have been
sufficient to solve the secondary vortex. Figure 11 shows the
potential vorticity for this simulation after 700 planetary orbits.
We can see that ζ is negative around 60 AU, therefore a
secondary vortex could be formed in that region.
The ratio between the positions of the secondary and primary

vortices in our benchmark cases is about 1.5. If this ratio is
fixed, the second generation of vortices in the Oph IRS 48
system would be located at ∼60 AU. In order to check whether
the secondary vortex was not observed due to a numerical
resolution problem, we run a second simulation considering the
same planet–disk setup as before, but integrating over a smaller
disk size. We fixed the inner and outer disk radius, in order to
maintain the same ratio between the planet orbital distance and
the boundaries as for the benchmark cases. The new simulation
has a disk ranging from 5 to 80 AU. Figure 12 shows the
potential vorticity for the smaller disk size after 700 planetary
orbits. Here, we can see the formation of a secondary vortex,
located at ∼62 AU, indicating that in the previous case the
numerical resolution was indeed not sufficient. This new result
is a promising explanation for the location of the Oph IRS 48ʼs

Figure 10. Pressure perturbation at t = 3500 orbits. The top panel shows a cut
of the pressure for f equals to the secondary vortex center. The bottom panel
shows a cut of the pressure for r equals to the secondary vortex center. The red
solid line represents simulation TR10, whereas the slate blue dot–dashed line
represents simulation ISO3MJ.
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vortex, assuming a single planet at ∼20 AU distance from the
star. It is also important to mention that at 700 planetary orbits,
the primary and secondary vortices are present. The benchmark
cases show that the primary vortex get damped before the
secondary one, thus for later times, just the secondary vortex
may be present.

7. VORTEX LIFETIMES AND BIRTH TIMES

In this section we obtain the primary vortex lifetime and
secondary vortex birth time as a function of the thermal
relaxation timescale. For this purpose, we first had to define
when the vortex is born. Once an overdensity with negative
potential vorticity arises, we declare that this overdensity is a
vortex. We define as overdensity a region that possesses an
average surface density at least 20% higher than the average
background surface density.

The center of the vortex was defined as the position of the
maximum surface density. We determined the vortex edge by
looking to the position where the potential vorticity drops to
50% below its value at the vortex center. This procedure was
done in both radial and azimuthal directions. Knowing the
dimensions of the vortex, we could calculate the average
surface density and potential vorticity inside the vortex.
The procedure of finding the vortex and defining its border

was done until the time that the vortex can not be defined as an
overdensity anymore. Once this criterion was reached we
defined the vortex as dead. In this way, the vortex lifetime was
defined as the difference between the time it is born and the
time it dies.
Figure 13 presents the primary vortex lifetime as a function

of the different thermal relaxation timescales. We observe a
nonmonotonic behavior that was already seen by Fu et al.
(2014) and Les & Lin (2015). Les & Lin (2015) explained that
the nonmonotonic behavior is due to the fact that the vortex
lifetime depends on (i) the decay timescale of the RWI, which
decreases for increasing tW , and (ii) the vortex growth time,
which increases for values of tW up to ∼5.0 and then decreases
for larger values. The nonmonotonic nature is a result of this
double dependence. The double peak, featuring at small tW ʼs
and tW = 5.0, is due to the nonmonotonic behavior of the
vortex growth time for different tW ʼs. Higher disk temperatures
favors the RWI (Li et al. 2000; Lin 2012a), nevertheless this
effect seems to be important just for larger tW ʼs. The
dependence of the vortex lifetime with the vortex growth time
comes to the fact that once the vortex amplitude is very large, it
begins to induce shocks, thus the vortex looses energy through
shock dissipation and starts to decay. The inviscid approxima-
tion may have influenced the estimation of the vortex lifetimes,
since it is inversely dependent on the viscosity magnitude (de
Val-Borro et al. 2007; Ataiee et al. 2013; Fu et al. 2014).
Nonetheless, it is clear that it did not influence the qualitatively
behavior of vortex lifetimes as a function of thermal relaxation
timescales, since our results are in agreement with Fu et al.
(2014) and Les & Lin (2015).
We also plot in Figure 13 the time when the secondary

vortex is born. A nonmonotonic behavior is also observed and
the curves are shifted by a few hundreds of planetary orbits,
with exception for tW = 10.0. Since the primary vortex is born
in a scale of tens of planetary orbits, it is clear that the
secondary vortex is always born before the death of the primary
vortex, again with exception for tW = 10.0. The time taken

Figure 11. Potential vorticity with the Keplerian profile subtracted for
=t 700 orbits. The color bar was truncated from -0.5 to 0.5 in order to

obtain a higher contrast.

Figure 12. Potential vorticity with the Keplerian profile subtracted for
=t 700 orbits. The color bar was truncated from -0.5 to 0.5 in order to

obtain a higher contrast.

Figure 13. The lifetime of the primary vortex (red dashed line) and the birth
time of the secondary vortex (slate blue dot–dashed line) as a function of the
thermal relaxation timescale.

11

The Astrophysical Journal, 810:94 (13pp), 2015 September 10 Gomes et al.



for the secondary vortex to be born is correlated to the time that
the primary vortex needs to deplete the mass on its orbit.
Therefore it depends on the vortex growth time and the
accretion rate generated by the primary vortex. This explains
the inverse dependence of the secondary vortex birth time and
primary vortex growth time as a function of the thermal
relaxation time scale.

8. SUMMARY AND CONCLUSIONS

Vortices can be formed as a product of the RWI and/or
radial buoyancy (BI/SBI/CO). The RWI can be triggered in
the walls of a planetary gap due to a sharp surface density
gradient. The disk is buoyantly unstable when the pressure and
entropy gradients have the same sign, a thermal relaxation of
the order of tW  1.0 also favors vortex amplification. We
carried out global 2D-HD simulations of planet–disk interac-
tions, using the PLUTO code. The aim was to study the long-
term evolution of planet-induced vortices in inviscid disks and
initially buoyantly unstable, considering several thermal
relaxation timescales. Thermal relaxation is an important
ingredient to sustain radial buoyancy (Petersen
et al. 2007a, 2007b). It has also a strong impact on amplifying
and damping vortices.

We found that radial buoyancy smoothen the surface density
gradients in the wall of a planetary gap, which generates
weaker vortices. In this particular physical scenario, radial
buoyancy operates against vortex amplification and survival.
This effect is less pronounced for the isothermal and quasi-
isothermal states ( tW  1), which is expected, since thermal
relaxation is a required ingredient to sustain radial buoyancy.
The qualitative system evolution is similar for different thermal
relaxation timescales and different planet masses. The major
difference is regarding the timescales of events (e.g., time
required for vortex damping and mass transfer).

The most interesting result from our simulations was the
formation of a second generation of vortices. The primary
vortex creates an effective α-viscosity that is large enough to
induce accretion. We obtained α-values in the range
a = - -10 104 2– , which agrees with what is obtained by the
MRI (Dzyurkevich et al. 2010). The accretion process depletes
the mass in the primary vortex orbit, creating a density
enhancement outwards the vortex position. This bump is
sufficient to trigger the RWI, leading to the secondary vortex
formation. This result is a promising explanation for the
location of the vortex in the Oph IRS 48 system (van der Marel
et al. 2013), which is located at ∼63 AU. Previous models
predicted that the vortex location could be at most at ∼45 AU,
assuming a single planet at ∼20 AU. Our model suggests that a
second generation of vortices can be formed at ∼62 AU, if a
massive planet ( M5 J) is assumed at 20 AU. We suggest that
further works should test the formation of a second generation
of vortices in non-inviscid disks and considering a proper
treatment of the system’s barycenter location, since these
factors may influence the generation and sustenance of vortices.

We observed a nonmonotonic behavior for the vortex
lifetime as a function of the thermal relaxation timescale. This
result was already observed by Fu et al. (2014) and Les & Lin
(2015). The vortex lifetime depends on the decay of the RWI
and the vortex growth time. The former decreases as a function
of the thermal relaxation timescale. The latter increases as a
function of the thermal relaxation timescale up to tW = 5.0,
decreasing for larger tW ʼs. The nonmonotonic behavior and

double peak observed for the vortex lifetime is a result of this
double dependence. The birth time of the secondary vortex also
presents a nonmonotonic behavior. The appearance of the
secondary vortex is correlated to the time the primary vortex
needs to deplete the mass on its orbit. Therefore it is linked to
the primary vortex growth time and the accretion rate generated
by it. It is important to remember that we considered an
inviscid disk. Previous works have shown that the vortex
lifetime is inversely dependent on the viscosity magnitude (de
Val-Borro et al. 2007; Ataiee et al. 2013; Fu et al. 2014). All
the viscosity in our models is turbulence-triggered by the
hydrodynamical instabilities. The inviscid approximation may
have quantitatively changed the vortices lifetimes; however, it
did not change the qualitative behavior of vortices lifetime as a
function of thermal relaxation timescales.
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