1,871 research outputs found

    The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars

    Full text link
    We present the IACOB grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar Atmospheres in the Gaia Era Workshop

    Modeling Network Populations via Graph Distances

    Get PDF
    This article introduces a new class of models for multiple networks. The core idea is to parametrize a distribution on labelled graphs in terms of a Fr\'{e}chet mean graph (which depends on a user-specified choice of metric or graph distance) and a parameter that controls the concentration of this distribution about its mean. Entropy is the natural parameter for such control, varying from a point mass concentrated on the Fr\'{e}chet mean itself to a uniform distribution over all graphs on a given vertex set. We provide a hierarchical Bayesian approach for exploiting this construction, along with straightforward strategies for sampling from the resultant posterior distribution. We conclude by demonstrating the efficacy of our approach via simulation studies and two multiple-network data analysis examples: one drawn from systems biology and the other from neuroscience.Comment: 33 pages, 8 figure

    The Cocoon Nebula and its ionizing star: do stellar and nebular abundances agree?

    Full text link
    (Abridged) Main sequence massive stars embedded in an HII region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula, a close-by Galactic HII region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to perform a detailed comparison of nebular and stellar abundances in the same Galactic HII region. We investigate the chemical content of O, N and S in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum and a detailed spectroscopic analysis of its ionizing B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines (CELs) and optical recombination lines in photoionized nebulae. We collect spatially resolved spectroscopy of the Cocoon nebula and a high resolution optical spectrum of its ionizing star. Standard nebular techniques are used to compute the physical conditions and gaseous abundances of O, N and S. We perform a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. The Cocoon nebula and its ionizing star, located at a distance of 800+-80 pc, have a very similar chemical composition as the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighbourhood as derived from the study of the local cold-gas ISM. The comparison of stellar and nebular CELs abundances in the Cocoon nebula indicates that O and N gas+dust nebular values are in better agreement with stellar ones assuming small temperature fluctuations, of the order of those found in the Orion nebula.Comment: Accepted for publication in A&A. 13 pages, 7 tables and 6 figure

    Observational evidence for a correlation between macroturbulent broadening and line-profile variations in OB Supergiants

    Get PDF
    The spectra of O and B supergiants are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high resolution spectra have shown that the interpretation of this line broadening as a consequence of large scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long term observational project, we are investigating the macroturbulent broadening in O and B supergiants and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this letter, we present the first encouraging results of our project, namely firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 supergiants with spectral types ranging from O9.5 to B8.Comment: 8 pages, 3 figures, accepted for publication in ApJ

    Attainment Regions in Feature-Parameter Space for High-Level Debugging in Autonomous Robots

    Get PDF

    Counterfactual Explanation and Causal in Service of Robustness in Robot Control

    Get PDF

    The Library of Babel

    Full text link
    We show that heavy pure states of gravity can appear to be mixed states to almost all probes. Our arguments are made for AdS5\rm{AdS}_5 Schwarzschild black holes using the field theory dual to string theory in such spacetimes. Our results follow from applying information theoretic notions to field theory operators capable of describing very heavy states in gravity. For certain supersymmetric states of the theory, our account is exact: the microstates are described in gravity by a spacetime ``foam'', the precise details of which are invisible to almost all probes.Comment: 7 pages, 1 figure, Essay receiving honorable mention in the 2005 Gravity Research Foundation essay competitio
    corecore