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Abstract

This article introduces a new class of models for multiple networks. The core idea is to parametrize a distribution
on labelled graphs in terms of a Frechét mean graph (which depends on a user-specified choice of metric or graph
distance) and a parameter that controls the concentration of this distribution about its mean. Entropy is the natural pa-
rameter for such control, varying from a point mass concentrated on the Frechét mean itself to a uniform distribution
over all graphs on a given vertex set. We provide a hierarchical Bayesian approach for exploiting this construction,
along with straightforward strategies for sampling from the resultant posterior distribution. We conclude by demon-
strating the efficacy of our approach via simulation studies and a multiple-network data analysis example drawn from
systems biology.

Keywords: Hierarchical Bayesian models, Graph metrics, Network variability, Object oriented data, Random graphs,
Statistical network analysis.

1 Introduction
This article introduces a new class of models for data consisting of observations of multiple networks. With advances
in measurement technology, these types of data are rapidly becoming prominent in fields such as systems biology and
neuroscience, among others. In systems biology, inferences must often be combined on the same gene interaction
network, where different inferences correspond to different data sets or to different analysis procedures applied to the
same data [Bartlett et al., 2014]. In neuroscience, a population of networks encodes the way different regions of the
brain interact when individuals perform a given task [Biswal et al., 2010], or characterises a population of individuals
suffering from a neurological or psychiatric disorder [Lynall et al., 2010, Nelson et al., 2017].

The developments proposed herein are therefore motivated by the problem of modelling network populations.
The class of models we propose is based on the idea that distributions on graph space are naturally parameterised in
terms of a mean—the Frechét mean, which is itself a network—and a measure of how concentrated the distribution
is about this mean. A benefit of our approach is that the Frechét mean itself can be interpreted as the representative
of a population of networks, relative to a user-specified choice of metric or graph distance. To specify concentration
around the Frechét mean, we use entropy as described below. We then provide general strategies for performing
Bayesian inference for these new models, allowing for the modeller to decide which metric is most suitable for the
given application at hand.

By multiple networks we mean two or more networks comprising a set of independent observations, and for
simplicity we assume here that each network is defined over the same vertex set. A cancer genomics example (which
we study later in Section 6) drawn from systems biology is displayed in Fig. 1, with the gene assigned to each node
described in Table 4 below. Note from Fig. 1 that if we consider each possible pair of observations, any member of
such pair can be seen as a slight modification of the other member. Thus, although one modelling approach would be
∗Dr. Simón Lunagómez is a Lecturer at the Department of Mathematics and Statistics at Lancaster University (s.lunagomez@lancaster.ac.uk).

Dr. Sofia C. Olhede is Professor and Chair of Data Science at Institute of Mathematics, École Polytechnique Fédérale de Lausanne
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Figure 1: Example of multiple network data in the context of cancer genomics, with each node one of the 19 most
frequently mutated human cancer genes (see Section 6). Top Left: Network N1 inferred from curated databases; Top
Right: Network N2 determined by a series of individual experiments; Bottom Left: Network N3 inferred via text
mining; Bottom Right: Posterior mode estimate NFM of the Frechét mean of N1–N3 using a metric on graph space
based on diffusion.

to treat such networks as realisations from a single random graph model based on global features, such as a stochastic
block model, this limits the inferential insights that can be gained from multiple networks as opposed to a single one.

Indeed, the questions arising from multiple network data demand a different perspective:

1. How does one find a summary or representative (at the population level) for multiple observed networks? In
other words, what type of structure must the modeller impose on the space of labelled graphs to define a suitable
estimand? Without such an estimand (e.g., in the case of block modelling or link prediction) we risk our
inference yielding a summary of the population that does not look like any of its elements, and cannot be used
in place of them.

2. In the Bayesian setting, if we have multiple networks (such as those in Fig. 1) as historical data, how do we
perform prior elicitation without resorting to global assumptions on the network structure? For example, in
systems biology it is typical that past inferences regarding a given gene interaction network may provide a very
accurate idea about what a newly inferred network might be expected to look like, when obtained using a new
measurement technology.

We show here that both questions can be answered by first assuming that the observed networks are perturbations
of a “typical” network, and then characterising the variability of the data in those terms. Specifically, the Frechét mean
implied by a given metric will parametrize a generative model, under the assumption that the probability of generating
a specific network is given by a strictly decreasing function only of its distance from this Frechét mean.

To construct our models, we borrow ideas from the graphical models and shape theory literatures, where authors
have considered the notion of a “typical” non-Euclidean observation, and random perturbations from that observation.
Previous work on multiple networks in the statistics literature includes the following: The approaches proposed by
Balachandrian et al. [2017] and Chang et al. [2018] for estimating features (subgraph counts and density, respectively)
from network data; the model proposed by Gollini and Murphy [2016] (which is an extension of the latent space model
proposed by Hoff et al. [2002]) for describing the variability of a homogeneous population of networks; the Bayesian
nonparametric approach proposed by Durante et al. [2017] for modelling heterogeneous populations of networks; and
the approach for comparing populations of networks via testing by Ginestet et al. [2016]. The methodology of the
last paper is based on the asymptotic theory for the space of unlabelled networks developed by Kolaczyk et al. [2017],
which serves to quantify how concentrated the distribution is around a mean network when formulated in terms of a
very specific metric. Kolaczyk et al. [2017] and earlier Feragen et al. [2011] discuss the problem of estimating a mean
and the geometry associated to the space of possible values for that estimand, the former for the space of graphs while
the latter for the space of trees.

Recently, Nielsen and Witten [2018] proposed a multiple network model based on the random dot product graph
model; their approach builds on work by Wang et al. [2017], who proposed a gradient-descent method to compute the
simultaneous embedding of a set of graphs. In terms of inference, Nielsen and Witten [2018] focus on the problem of
comparing populations of networks. Tang et al. [2017] focus on the problem of testing for the difference of two popu-
lations of networks; the authors assume a random dot product graph model, as in Wang et al. [2017], but computation
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is done using the bootstrap. We also note the model-based approach for estimating the generating mechanism of mul-
tiple networks given by Bhattacharyya and Chatterjee [2018]. Finally, some of the ideas developed in this paper have
parallels in the literature for modelling measurement error for networks, including recent work by Newman [2018],
Peixoto [2018] and Le et al. [2018].

In a different direction, similarity measures on the local structure of a network have been used to perform prior
elicitation on graph space, particularly in the graphical models literature; this idea has been discussed by Mukherjee
and Speed [2008] as well as Mitra et al. [2013]. Our approach can also be related to work by Tan et al. [2017] in the
graphical models literature, who propose a hierarchical model on graph space. From the shape theory literature, we
borrow insight from the work of Mardia and Dryden [1998], which uses the idea of modelling a set of non-Euclidean
objects (shapes) in terms of a centroid and parameters that control how concentrated the distribution will be around
that centroid.

From a Bayesian point of view, computing a Frechét mean at the population level is analogous to minimising the
posterior expected loss, and becomes exactly the same problem when the loss is a metric. Wade and Ghahramani
[2017] operate in that regime, in the context of cluster analysis. In our work, we use entropy in conjunction with the
Frechét mean to define a distribution for non-Euclidean data, and in that sense, our work relates to the methodology
developed by Pennec [2006].

Distinct from the literature discussed above, the methodology we propose here achieves different goals: (1) It
enables the modeller to characterise the variability of a set of observed networks in terms of a Frechét mean and
a measure of how concentrated the distribution is around this mean, and to perform Bayesian inference, without
resorting to asymptotics; (2) It enables the practitioner interested in network data to perform prior elicitation on graph
space by using an observed network as starting point; and (3) It provides tools for incorporating different metrics on
graph space into the modelling procedure, enabling the encoding of different assumptions the practitioner may have
regarding similarity among graphs.

The remainder of this article is organised as follows. Section 2 first introduces the necessary preliminaries, includ-
ing metrics on graph space and the Frechét mean. Section 3 then details the general concepts on which the generative
models proposed in this paper are be based on, along some examples. The corresponding strategies for Bayesian mod-
elling and computation are presented in Section 4. Section 5 documents the behaviour of our models via simulation
studies, and Section 6 describes fully the fitting of our models to the multiple-network data introduced in Fig. 1 above.
Finally, Section 7 discusses briefly the contributions of our approach, placing it in context and outlining limitations as
well as future possibilities.

2 Preliminaries
A simple labelled graph G = (V, E) comprises a set of vertices V and a set of edges E ⊂ {E ⊂ V : |E| = 2}. Letting
N = |V|, we may represent G by an N ×N adjacency matrix AG such that

AG(i, j) =

{
1 if there is an edge between nodes i and j,
0 otherwise.

The models and methods we propose can all be applied equally to directed graphs (withAG(i, j) distinct fromAG(j, i)
for i < j) and those having self-loops (AG(i, i) = 1), as well as more generally any weighted graph such that each
AG(i, j) takes values in some finite, discrete set. We write that a graph G1 = (V1, E1) is a subgraph of G2 = (V2, E2)
if V1 ⊆ V2 and E1 ⊆ E2. For a set {Gs}s∈S , we denote by AGk(i, j) the (i, j)th entry of the adjacency matrix of Gk,
k ∈ S.

Metrics on graph spaces in turn allow for an appropriate definition of network structural similarity [Donnat and
Holmes, 2018]. For N ∈ N and V := {1, 2, . . . , N}, define{

G[N ]

}
:= {G = (V, E) : |V| = N} ,

so that
{
G[N ]

}
represents the set of allN -node labelled networks of a given type (simple, directed, etc.). If we consider

simple graphs, for example, then
∣∣{G[N ]

}∣∣ = 2(N
2 ).

We are interested in developing probability models on
{
G[N ]

}
given the choice of a metric dG(·, ·) on

{
G[N ]

}
.

Two examples of metrics which can be used to formulate the models introduced in Section 3 below are as follows:
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1. The Hamming distance between two graphs when their adjacency matrices are treated as strings, which is given
by the number of entries that disagree. We will use the notation

dG(G1,G2) = |AG1 −AG2 |H ,

to denote this distance independently of the type of network under consideration by the modeller (e.g., simple,
directed).

2. A Diffusion distance based on the graph Laplacian, for example the choice made by Hammond et al. [2013]:

dG(G1,G2; t) = ‖ exp(−tLG1)− exp(−tLG2)‖2F , t > 0;

where ‖ · ‖F is the Frobenius norm and LG is the combinatorial Laplacian matrix associated to an undirected
graph G:

LG(i, j) =

{∑N
k=1AG(i, k) if i = j,

−AG(i, j) otherwise.

This distance arises as exp(−tLG) is the kernel associated with (e.g., classical heat) diffusion on a graph G
via the discrete Laplace operator LG . The value of dG(G1,G2) measures the discrepancy after t units of time
between the diffusion patterns associated to G1 and G2. For our purposes t may be regarded as a parameter
whose value can be elicited a priori using information from the application domain under consideration. As
t decreases, it becomes harder to distinguish between diffusion patterns and therefore to distinguish between
different elements of

{
G[N ]

}
.

We conclude this section by introducing the Fréchet [1948] mean for use in the context of the metric spaces
(
{
G[N ]

}
, dG) and associated probability models that we will consider below. Given an arbitrary metric space (Y, d)

and a probability measure on Y , the Fréchet mean provides the notion of an average or measure of central tendency
with respect to d. It generalizes the first moment to non-Euclidean settings and has seen wide use in areas such as
shape theory.

Definition 2.1 (Fréchet mean) Let Y be a random element defined on sample space Y and let d(·, ·) be a metric on
Y . The set

ψm = arg inf
ψ∈Y

EY [d2(Y, ψ)] (1)

is called the Fréchet mean set of Y .

We will use the Fréchet mean in conjunction with unimodality to formulate natural and intuitive models on the
space

{
G[N ]

}
of labelled N -node networks.

3 Modelling Approach
In this section, we propose a generative modelling approach for data sets consisting of multiple networks. Our models
are parametrized in terms of a unique mode and a univariate measure of dispersion around that mode. The mode in
the space of labelled N -node networks

{
G[N ]

}
is itself a network defined on the same vertex set as each individ-

ual observation, allowing us to define a suitable estimand to obtain directly a population-level summary of multiple
networks.

In analogy to a location–scale family, we provide concepts that enable us to propose probability models on
{
G[N ]

}
in terms of a central graph (location) and concentration around that central graph (scale). We use the terms loosely
given that we are working in a non-Euclidean setting. In contrast with the location–scale family, which takes the vector
space structure for granted, we are constrained by the structure entailed by a metric in

{
G[N ]

}
and the fact that the

space is finite.

Definition 3.1 (Unimodal network distribution based on location) Fix a metric dG on
{
G[N ]

}
for N ∈ N, and

consider a family of probability mass functions {p(· | Gm)}Gm∈{G[N]} on
{
G[N ]

}
such that

1. Each p(· | Gm) is unimodal with mode Gm ∈
{
G[N ]

}
;

4



2. For G1,G2 ∈
{
G[N ]

}
, we have that dG(G1,Gm) > dG(G2,Gm) implies p(G2) > p(G1), while dG(G1,Gm) =

dG(G2,Gm) implies p(G2) = p(G1).

The most straightforward example is as follows: the Centred Erdös–Rényi Model, which will be introduced later
on this section. This example also satisfies another key property. Location is key; building on this, scale even more so.

Definition 3.2 (Unimodal network distribution based on location and scale) Fix a metric dG(·, ·) on
{
G[N ]

}
for

N ∈ N and a nonempty set Γ ⊂ R+, and consider a family {p(· | Gm, γ)}Gm∈{G[N]},γ∈Γ on
{
G[N ]

}
such that

1. For every fixed scale parameter γ∗ ∈ Γ, the family {p(· | Gm, γ∗)}Gm∈{G[N]} satisfies Definition 3.1 with
respect to the metric dG.

2. For every fixed location parameter G∗ ∈
{
G[N ]

}
, the entropy associated to the family {p(· | G∗, γ)}γ∈Γ is a

strictly monotone function of γ ∈ Γ.

For finite, discrete sets such as
{
G[N ]

}
and associated probability mass function p(·), entropy −E {log p(·)} pro-

vides a convenient characterization akin to variance, ranging from 0 for a point mass to log(|
{
G[N ]

}
|) for the uniform

distribution on
{
G[N ]

}
. Entropy can thus be used to parametrize a family of discrete distributions on

{
G[N ]

}
with

the same unique mode, in an analogous way the scale parameter would parametrize a member of the location–scale
family when the location parameter has been specified. The metric provides a ranking of the elements

{
G[N ]

}
given

the mode, the entropy enables the statistician to control the decay of the values of the probability mass function given
that ranking. To take the analogy with a Gaussian distribution γ plays the role of 1/σ for the Gaussian, where σ2 is
the variance. Therefore we expect γ → 0 to play the role of σ → ∞, or the maximum entropy solution that should
be the least peaked. In contrast, γ → ∞, we expect to correspond to the minimum entropy solution, and be the most
concentrated distribution. Therefore intuitively, we expect the entropy to decay in γ. This allows us to consider the
analogy of “peaked” versus “flat” distributions where γ controls the peak.

We now provide two examples for the random graph distribution based on distance and entropy. These examples
will be discussed in detail in Sections 4.1 and 4.2, respectively.

We will now introduce a first example of a random graph distribution based on distance and entropy; we call it the
Centred Erdös–Rényi Model. The intuition behind this model is that noisy versions of the centroid (which is denoted
by Gm) are generated by flipping edges independently at random with probability α. From a modelling perspective, it
is sensible to penalize (or constrain) α so it takes values much smaller than the density of Gm; there is little utility for
a model where the trend is overwhelmed by noise.

Definition 3.3 (Centred Erdös–Rényi Model) Given a graph Gm ∈
{
G[N ]

}
and 1/2 > α > 0, consider a model

p(· | Gm, α) on
{
G[N ]

}
of the form :

AG(i, j) | AGm(i, j), α = |AGm(i, j)− Z(i, j)|,

where the Z(i, j)’s are iid Ber(α) for 1 ≤ i < j ≤ N . We call this the Centred Erdös–Rényi Model (CER) with mode
Gm and parameter α.

Observe that if a parametric random graph model is further imposed upon Gm (e.g., Erdös–Rényi), then this model
can be cast into the approach proposed by Newman [2018]. (For the Centred Erdös–Rényi to effectively serve as an
error measurement model, the α parameter should be constrained to be be smaller than the edge density parameter
of Gm.) The condition 1/2 > α > 0 ensures that the maximum likelihood estimator (of Gm) will be the graph that
minimises the average number of mismatches with respect to the observed networks.

Proposition 3.1 If two graphs G1 and G2 are generated from the Centred Erdös–Rényi model with centroid Gm
and 0 < α ≤ 1/2 then we have that dH(G1,Gm) > dH(G2,Gm) implies p(G2) > p(G1), while dH(G1,Gm) =
dH(G2,Gm) implies p(G2) = p(G1). We let dH(·, ·) denote the Hamming distance. We deduce that p(G) is unimodal,
and that the Centred Erdös–Rényi model is a network distribution based on the Hamming distance. In addition, the
Centred Erdös–Rényi model is a network distribution based on distance via entropy.

As a second example of a unimodal network distribution based on location and scale, we introduce a model
motivated by the notion that the similarity with respect to the centroid is made concrete by the choice of dG(·, ·) (e.g.
the metrics proposed by Zelinka [1975], Hammond et al. [2013], or the ones discussed in Donnat and Holmes [2018]).
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Definition 3.4 (Spherical Network Family) Given a graph Gm ∈
{
G[N ]

}
, a metric dG(·, ·) on

{
G[N ]

}
, and γ > 0,

we propose:
p(G | Gm, γ) ∝ exp {−γφ(dG(G,Gm))} ,

where φ(·) is a non-negative strictly increasing function such that φ(0) = 0. This is the Spherical Network Family
with parameters Gm and γ.

This model is related to the prior introduced by Mitra et al. [2013], which was introduced in the context of graphical
modelling. A main difference with respect to their approach is that the Spherical Network Family is aimed to serve as
the functional form for both the likelihood and the prior. The normalizing constant for this model is the reciprocal of:

Z(Gm, γ) =
∑

G∈{G[N]}
exp {−γφ(dG(G,Gm))} , (2)

here Z(Gm, γ) is known as the partition function. We observe directly that Z(γ) > 0 as it is a sum of positive terms.
Note that as (2) aggregates over G ∈

{
G[N ]

}
, the sum will not be a function of directly φ(dG(G,Gm)), only implicitly.

Therefore Z(Gm, γ) is a positive constant that does not depend on d(X,µ).
The functional form proposed for the Spherical Network Family (SNF) is inspired by the notion of symmetry of

the density discussed in Fang et al. [1990]. A random variable X on X has the symmetry of the density property if its
density p(· | µ, γ) is of the form

p(X | µ, γ) = Z−1(γ) · exp [−γφ(d(X,µ))] ,

where µ ∈ X , γ > 0, φ(·) ≥ 0 is a non-decreasing function, d(·, ·) is a metric on X .

Proposition 3.2 The CER is a member of the SNF.

The above proposition demonstrates that the SNF is not empty. There are some other properties we would like to
see, and to be clear on what properties that we desire, let us show that they hold in the following proposition.

Proposition 3.3 If two graphs G1 and G2 are generated from the Spherical Network Family with centroid Gm and
γ ∈ R+ then we have that dG(G1,Gm) > dG(G2,Gm) implies p(G2) > p(G1), while dG(G1,Gm) = dG(G2,Gm)
implies p(G2) = p(G1). We let dG(·, ·) denote a metric on

{
G[N ]

}
. As a consequence p(G) is unimodal, and the

Spherical Network Family is a network distribution based on the distance dG(·, ·). In addition, the Spherical Network
Family is a network distribution based on distance via entropy if Var {φ [d(G,Gm)]} > 0.

The next step consists in verifying if the examples we have presented fulfill the condition stated in Proposition 3.3

Proposition 3.4 The CER and SNF equipped with the diffusion distance fulfill the condition Var {φ [d(G,Gm)]} > 0
when φ(·) is the identity function.

The following property of the sample Fréchet mean will provide insight regarding the behavior of the MLE for
both models defined above and supports our intuition that the posterior mode will tend to the true value of the Fréchet
mean as the sample size increases.

Proposition 3.5 The sample Fréchet mean in
{
G[N ]

}
converges to the true Fréchet mean when the later exists and is

unique, for N ∈ N.

Definition 3.1 is expressed in terms of the mode of the distribution. The following result indicates how the Fréchet
mean and mode relate for the Centred Erdös–Rényi Model:

Proposition 3.6 The mode and Fréchet mean coincide for the Centred Erdös–Rényi Model defined on
{
G[N ]

}
,N ∈ N.

For the Spherical Network Family, the Fréchet mean maximises the pseudo-likelihood; this is a direct consequence of
Definitions 2.1 and 3.4.

Now, we have enough elements for presenting our model for multivariate network data. Let N ∈ N and dG a
metric on

{
G[N ]

}
. To describe the variability of a set observations {G1,G2, . . . ,Gn} in

{
G[N ]

}n
, we propose a model

of the form:

p(G1,G2, . . . ,Gn | Gm, γ) = p(Gm | G0, γ0)p(γ)

n∏
i=1

p(Gi | Gm, γ), (3)
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where p(· | Gm, γ) is the likelihood, which is given by a unimodal network distribution based on location and scale;
p(· | G0, γ0) is the prior on the mode of the distribution, such prior is also given by a distribution with the same
functional form as the likelihood; finally, p(γ) is the prior on the entropy of the distribution. One implication of
choosing this parametrization is that the inference will be in terms of the population centroid, which is a network by
itself. This enables the statistician to perform an operation equivalent to smoothing in graph space.

We propose this model with the aim to represent the variability of a set of observations {G1,G2, . . . ,Gn} in{
G[N ]

}n
such that, for every pair {Gi,Gj} with 1 ≤ i < j ≤ n, Gi is a small perturbation of Gj according to dG. The

main assumptions encoded by the model presented in Equation 3 are:

1. The distribution of the observations is assumed to be unimodal a priori;

2. The variability of the observations is characterised in terms of the dispersion around the mode. Such dispersion
is defined in terms of dG a metric on

{
G[N ]

}
;

3. The prior distribution for the mode is assumed to have the same functional form as the likelihood. This implies
that it will be unimodal; its mode will be denoted by G0. We will not assume any structure on G0, unless we
state otherwise.

The first condition is set to guarantee identifiability of the model. The second condition enables the statistician to
use the notion of similarity between networks, which can be subject to elicitation, to define variability in the space of
graphs, which is, in contrast, very challenging to elicit. The third condition has parallel versions in the functional data
analysis literature: we assume a parametric model for the error, with very simple structure, while allowing the trend to
be as complex as it needs to be. An alternative approach would be to assume a trend with more defined structure and
allow for a richer error structure. We elaborate more on this point in the discussion.

4 Bayesian Modelling and Computation
In this section, we introduce Bayesian hierarchical models based on the distributions presented in Section 3. For these
models, we assume the same functional form for the sampling distribution and for the prior on the Fréchet mean.
We also discuss strategies for sampling from the posterior, with emphasis on the case when the normalising constant
depends on the Fréchet mean.

4.1 Bayesian Inference for the Centred Erdös–Rényi Model
We now discuss a model of the form 3 based on the Centred Erdös–Rényi Model (CER). The intuition behind this
model is the following: given a set of observed networks {G1,G2, . . . ,Gn} in

{
G[N ]

}n
, their variability can be charac-

terised in terms of the network Gm that serves as the mode of the distribution and the dispersion around that network.
The network Gm can also be interpreted as the Fréchet mean of

{
G[N ]

}n
implied by the metric and the probability

model.
Within this context, the contribution to the likelihood by each observation Gi is therefore given by:

p(Gi | Gm, α) = αdH(Gi,Gm)(1− α)
(N−1)N

2 −dH(Gi,Gm), (4)

where dH(·, ·) is the Hamming norm for matrices. Expressions 4 and 3 provide the elements we need to propose the
following Bayesian model:

Definition 4.1 (CER/CER Model) Let N and n be elements of N. The CER/CER Model is a multivariate network
model on

{
G[N ]

}n
of the form

p(G1,G2, . . . ,Gn | Gm, α) = α
dH(Gm,G0)
0 (1− α0)

(N−1)N
2 −dH(Gm,G0)p(α)

×
n∏
i=1

αdH(Gi,Gm)(1− α)
(N−1)N

2 −dH(Gi,Gm), (5)

where, the prior p(·) for α is a scaled Beta on (0, 1
2 ). Here, G0 ∈

{
G[N ]

}
and α0 ∈ (0, 1) are the hyperparameters of

the model.
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We make no assumptions regarding N and n. Expression 5 is a consequence of the independence of the error, which
should be noted. We assume a Beta distribution for α is reasonable, since it can be specified in such a way that it is
unimodal and favours values close to zero.

Equation 4 proves helpful for understanding the properties of an Erdös–Rényi random graph as an measurement
error model. This implies the following properties for the CER/CER Model:

1. The log-likelihood can be computed using O(N2n) operations; this should be kept in mind when performing
Bayesian computations, such as MCMC.

2. For α specified and, the MLE is the graph Ĝm that minimises the average number of mismatches with respect
to the observed networks, i.e., the sample median network.

The prior for Gm has G0 as its mode and its entropy is determined by the Hamming norm and α0. For the CER/CER
model, the normalizing constant does not depend on either Gm or α, therefore, samples of the posterior for (Gm, α)
can be obtained via a Metropolis/Hastings algorithm with a mixture of kernels. To update AGm , the adjacency matrix
associated to Gm, we use the following proposals:

1. Each AGm(i, j) changes its value independently to (1 − AGm(i, j)) with probability 0 < τ < 1, or stays fixed
with probability 1− τ .

2. Each AGm(i, j) is sampled independently from a Ber( 1
n

∑n
k=1AGk(i, j)).

To update α we use a mixture of random walks that reflect at 0 and 0.5. For each of these random walks (indexed by
k), the proposed value α∗ for α(i+1) is given by:

1. y = α(i) + ζ(i+1), with ζ ∼ Unif(−υk, υk), if 0 < y < 0.5;

2. −y, if y < 0;

3. 1− y, if y > 0.5.

The mixture is over {υ1, υ2, · · · , υK}.

4.2 Bayesian Inference for Models in the Spherical Network Family
The Spherical Network Family was defined following the intuition that the likelihood should decrease as a function of
the distance dG(·, ·) with respect to a graph Gm that serves as the Frechét mean. When proposing the functional form,
we adopted concepts from the Rotationally Symmetric Family, proposed by Mardia and Dryden [1998]. In contrast
to the SER/SER model discussed in Section 4.1, the Bayesian model presented in this section enables the statistician
to specify dG(·, ·). To perform Bayesian inference for (Gm, γ) as described in Definition 3.4 , we propose to use a
hierarchical model, following the form proposed in Equation 3:

Definition 4.2 (SN/SN Model) Let N and n be elements of N and dG(·, ·) a metric on
{
G[N ]

}
. The SN/SN Model is

a multivariate network model on
{
G[N ]

}n
of the form

p(G1,G2, . . . ,Gn | Gm, γ) ∝ exp {−γ0φ(dG(Gm,G0))} p(γ)

× exp

{
−γ

n∑
i=1

φ(dG(Gi,Gm))

}
, (6)

where, p(·) is the prior on γ, which has support on R+. Here, G0 ∈
{
G[N ]

}
and γ0 ∈ R+ are the hyperparameters of

the model.

Some features of this model are:

1. The model allows for different specifications of the metric dG(·, ·), which can be chosen with flexibility, for
concreteness, e.g. distance based on the graph Laplacian, or a metric based on subgraph counts.
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2. It is straightforward to set up a Metropolis/Hastings algorithm to sample from the prior. The Metropolis ratio
for updating G(·) is of the form:

H(t,t+1) =
exp

{
−γ0φ(dG(G(t+1),G0))

}
exp

{
−γ0φ(dG(G(t),G0))

} × q(G(t) | G(t+1))

q(G(t+1) | G(t))
,

where q is the proposal distribution; here, we are conditioning on the value of γ0.

3. The argument Ĝm that maximises the log of the pseudo-likelihood:

log

(
n∏
i=1

exp {−γφ(dG(Gi,Gm))}

)
= −γ

n∑
i=1

φ(dG(Gi,Gm)), (7)

where γ is specified, coincides with the Fréchet mean of the observes networks. This follows from applying the
definition of a centroid directly.

From a computational perspective, the fact that the normalizing constant for the observations (i.e., the reciprocal
of Z(·) in Equation 2) depends on Gm implies that the Metropolis/Hastings algorithm cannot be implemented directly
for sampling from the posterior of (Gm, γ). For Gm unspecified, this model falls into the double-intractable constant
distributions. Fortunately, sampling from the posterior for the SN/SN model falls into the setup discussed by Møller
et al. [2006]. Therefore, the techniques proposed by Møller et al. [2006] and Andrieu and Roberts [2009] can be
implemented to sample from the posterior.

To implement the sampler proposed by Møller et al. [2006], we use the probability mass function of the Centred
Erdös–Rényi Model as the conditional density for the auxiliary variables, which are denoted by (G1

∗ , . . . ,Gn∗ ), i.e.,

f(G1
∗ , . . . ,Gn∗ | Gm, α̃) = α̃

∑n
i=1 dH(Gi,Gm)(1− α̃)

(N−1)N
2 −

∑n
i=1 dH(Gi,Gm),

as in Section 2 of Møller et al. [2006]. Here, α̃ is the posterior mean of the dispersion parameter of a CER/CER model,
which can be estimated as described in Section 4.1. This is the strategy suggested in Equation 7 of Møller et al. [2006].
To update AGm , we use the same hybrid kernel as the one described in Section 4.1. To update γ, the parameter that
controls the entropy of the distribution, we use a hybrid kernel formed by a collection of random walks that reflect at
0. For each of these random walks (indexed by k), the proposed value γ∗ for γ(i+1) is given by:

1. y = γ(i) + ζ(i+1), with ζ ∼ Unif(−υk, υk), if 0 < y;

2. −y, if y < 0;

The mixture is over {υ1, υ2, · · · , υK}.

5 Simulation Studies
In this section, we explore the behaviour of the CER/CER model and the SN/SN model via simulation studies. We
consider that it should be of interest to practitioners to know: i) How precise the inferences become as a function of
the number of networks analysed (we will refer to this number as the sample size); ii) How accurate is her knowledge
regarding additional observations; iii) How sensitive are the inferences with respect to model misspecification. With
this in mind, we designed the simulation studies to investigate how the posterior concentrates around the true Fréchet
mean as a function of sample size, prediction and robustness.

5.1 Concentration of the Posterior as a Function of Sample Size
In this section, we propose simulation experiments to obtain better understanding of how the posterior for the mode
concentrates around the true mode as a function of sample size. Ideally, we wold like to investigate if the limit

Pr {dG(G,Gm) > ε | G1,G2, . . . ,Gn} → 0, (8)

holds almost surely as n→∞, given ε > 0, as N is assumed fixed. Here Gm is the true value of the mode and G is a
sampled value from the posterior distribution implied by {G1,G2, . . . ,Gn}. Equation 8 provides the principle behind
the following simulation experiments:
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1. Explore how the distance between the point estimate Ĝm given by the posterior mode and Gm behaves as a
function of sample size.

2. Investigate how the probability

Pr {dG(G,Gm) > ε | G1,G2, . . . ,Gn} < δ, (9)

behaves as a function of n ∈ N+, here ε > 0, δ > 0 are in turn fixed.

The first simulation provides insight about the speed of convergence of a point estimate, while the second simulation
investigates how the posterior mass becomes contained in a neighborhood of Gm as the sample size increases. Here,
the size of the neighborhood is controlled by ε and δ serves as a threshold for the amount of posterior mass to be
allowed outside the neighborhood.

The simulation regimes are given by:

1. The type of hierarchical model under study (CER/CER, SN/SN);

2. The structure imposed on Gm, the centroid of the distribution (generated from Erdös–Rényi, Stochastic Block
model, Small World, Random Geometric Graph);

Results from the first and second simulation for the CER/CER model are summarised in Fig. 2 and Table 1, re-
spectively. This results suggest that, the more homogeneous the adjacency matrix is in terms of inclusion probabilities,
the faster the posterior concentrates around the true value. This applies to the Erdös–Rényi model and the Random
Geometric Graph when compared to the Stochastic Block model. The Small World model turned out to be specially
challenging for our approach, since, by definition, a Small World graph is constructed by perturbing a graph with well-
defined structure (in this case, a lattice); therefore, it is not clear how to discriminate between that type of perturbation
and the perturbation built in the CER/CER and SN/SN models.

n Generative Model for Gm ε = 1 ε = 2 ε = 3
δ = 0.05

3 RGG 0.92 1 1
5 RGG 1 1 1
3 ER 0.66 0.97 1
5 ER 0.93 1 1
7 ER 1 1 1
3 SBM 0.63 0.87 0.96
5 SBM 0.83 0.98 1
7 SBM 0.91 1 1
10 SBM 1 1 1
3 SW 0.43 0.61 0.73
5 SW 0.62 0.77 0.89
7 SW 0.74 0.86 0.98
10 SW 0.81 0.96 1

Table 1: Proportion of replications where 1 − δ of the posterior mass for Gm is within a ball of radius ε of the true
value. We used 100 replications.

5.2 Network Prediction
In this section, we investigate the behaviour of our methodology in terms of prediction. To do this, we generate a
sample

{G1,G2, . . . ,Gn,Gn+1, . . . ,Gnt
}

for (Gm, γ) specified, and then, we partition this sample into a training set {Gi}i≤n and a test set {Gi}n<i≤nt
. Here,

nt − n is a tuning parameter for the simulation, set up by the statistician. We designed our simulations based on the
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idea that samples from the predictive distribution should be similar to the elements of the test set. In the context of
the models we have presented, the assumptions regarding similarity are encoded by the metric dG(·, ·). To make these
notions precise, we introduce the tuning parameters δ ∈ (0, 1) and ψδ > 0. Here, ψδ is the infimum of {ψ : ψ > 0}
for which

Pr

{
G ∈

nt⋃
k=n+1

B(Gk;ψ) | G1,G2, . . . ,Gn

}
≥ 1− δ, (10)

holds. In Equation 10, B(Gk;ψ) denotes the ball with centre Gk and radius ψ corresponding to dG(·, ·), and G is a
sampled value from the predictive distribution implied by the model and {G1,G2, . . . ,Gn}. The larger ψδ is, the less
concentrated the posterior predictive distribution will be around the test set. One way to interpret the size of ψδ more
effectively is by comparing it to quantities for which our intuitions are better informed. We propose comparing it to
ρδ , the infimum of {ρ : ρ > 0} for which

Pr {G ∈ B(Gm; ρ) | Gm, γ} ≥ 1− δ,

holds, i.e., ρδ is the size of the contour set that contains 1− δ of the probability mass under the specified model.
Implementing this simulation in practice is straightforward: we first compute the distances between each sample

from the posterior predictive and the element of {Gn+1,Gn+2, . . . ,Gnt
} closest to it. The estimate of ψδ is given by

the 1 − δ quantile of those distances. Results are summarised in Table 1 for the CER/CER model and the SN/SN
model.

Results are summarised in Table 2. These results suggest that the concentration of the predictive distribution decays
very slowly with respect to the sample sizes we considered for the simulation. We also observed that the results were
not very sensitive with respect to the generative model for Gm.

5.3 Robustness
In this section, we evaluate the proposed methodology in terms of robustness regarding model misspecification. This
is important, since we are making heavily parametric assumptions about the distribution of the deviations with respect
to the Frechét mean. We approach this task in two different ways: (i) by using visual diagnostics based on posterior
predictive checks (Gelman et al. [1996]), and (ii) by investigating the behaviour of the Bayesian χ2 (Johnson [2004])
under different scenarios.

The types of misspecification we consider for this simulation study are:
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Figure 2: Average distance of posterior mode to Gm as a function of sample size.
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n Generative Model CER/CER SN/SN
for Gm ψδ/ρδ ψδ/ρδ

3 ER 1.4447 1.0551
5 ER 1.3847 1.0253
7 ER 1.3676 1.0072
10 ER 1.3612 0.9590
3 RGG 1.4006 1.0516
5 RGG 1.3988 1.0247
7 RGG 1.3953 0.9958
10 RGG 1.3635 0.9366
3 SBM 1.4141 1.0573
5 SBM 1.3824 1.0410
7 SBM 1.3800 0.9898
10 SBM 1.3741 0.9516
3 SW 1.4788 1.0697
5 SW 1.4494 1.0419
7 SW 1.3953 0.9937
10 SW 1.3682 0.9545

Table 2: Average value ψδ for size of neighborhood needed so m samples from the predictive implied by n data points
encloses 1− δ of the predictive distribution associated with the true value of Gm and α. Here we assume a CER/CER
model (third column, left to right) and a SN/SN model (fourth column, left to right). For the CER/CER model ρδ = 17,
while for the SN/SN model, ρδ = 3642.1. The size of the network is 50 and α = 0.01. We set δ = 0.1 and m = 20
for all regimes. The average is computed over 100 replications.

1. Fitting the model when the data was generated by a model based on a different metric on the space of labelled
graphs.

2. Fitting the model when the data was generated by a dynamic network model.

For the first type of misspecification, we will fit the SN/SN model assuming the Hammond et al. [2013] metric while
the generative model is a CER/CER model, or vice versa. For the second type of misspecification, we generate data
from the dynamic network model implied by making Gk+1(i, j) | Gk(i, j) the conditional of a bivariate Bernoulli and
then, made all entries of Gk+1 conditionally independent given Gk, which induces a Markov structure on {G1, . . . ,Gn}.

Results are summarised in Table 3. These results suggest that is difficult to assess model misspecification in terms
of the center of the degree distribution. It was easier to find evidence of model misspecification, via posterior predictive
checks or the Bayesian χ2, when the focus was on the upper tail of the degree distribution.

6 Data Analysis
It has become common practice in systems biology to estimate networks that have either genes or proteins as nodes and
where the edges represent, either a potential flow of information (protein signalling) or other evidence of association.
Estimating the network is often an intermediate step within a series of inferences and/or decisions; this is for example
the case for the research aimed for the development of new treatments and vaccines. In this context, having an
appropriate characterisation of the variability across different estimated networks can prove key when trying to assess
the uncertainty to be associated to the final inferences/decisions. The variability of the inference of such networks can
be due to: i) use of different data bases, ii) use of different technologies to pre-process the data, iii) use of different
criteria to decide what constitutes and edge.

An example of a set of networks where the variability is can be attributed to the use of different data bases and/or
technologies is displayed in Figs. 1 and 3. Here, the nodes stand for the 19 most frequently mutated human cancer
genes (the key is provided in Table 4). These genes have a higher-than-expected degree of interconnectivity, this is
with respect to sets of genes of similar size selected at random. We consider four types of inferred edges:

N1. Inferred from expert opinion using curated databases
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n Model used to fit the data type of misspecification feature PPC Bayes χ2

3 Spherical Network Model Dependence 10 quantile of degree 0 0
3 Spherical Network Model Dependence 50 quantile degree 0 0
3 Spherical Network Model Dependence 90 quantile degree 0.08 0
10 Spherical Network Model Dependence 10 quantile of degree 0.02 0.02
10 Spherical Network Model Dependence 50 quantile degree 0 0.01
10 Spherical Network Model Dependence 90 quantile degree 0.09 0.11
50 Spherical Network Model Dependence 10 quantile of degree 0.07 0.05
50 Spherical Network Model Dependence 50 quantile degree 0.02 0.03
50 Spherical Network Model Dependence 90 quantile degree 0.76 0.93
3 Spherical Network Model Metric 10 quantile of degree 0.09 0
3 Spherical Network Model Metric 50 quantile degree 0 0
3 Spherical Network Model Metric 90 quantile degree 0.11 0
10 Spherical Network Model Metric 10 quantile of degree 0.03 0.07
10 Spherical Network Model Metric 50 quantile degree 0.02 0.03
10 Spherical Network Model Metric 90 quantile degree 0.05 0.07
50 Spherical Network Model Metric 10 quantile of degree 0.07 0.22
50 Spherical Network Model Metric 50 quantile degree 0 0.14
50 Spherical Network Model Metric 90 quantile degree 0.09 0.97
3 Centred Erdös–Rényi Model Dependence 10 quantile of degree 0 0
3 Centred Erdös–Rényi Model Dependence 50 quantile degree 0 0
3 Centred Erdös–Rényi Model Dependence 90 quantile degree 0.03 0.04
10 Centred Erdös–Rényi Model Dependence 10 quantile of degree 0.02 0.01
10 Centred Erdös–Rényi Model Dependence 50 quantile degree 0 0.00
10 Centred Erdös–Rényi Model Dependence 90 quantile degree 0.07 0.14
50 Centred Erdös–Rényi Model Dependence 10 quantile of degree 0.07 0.05
50 Centred Erdös–Rényi Model Dependence 50 quantile degree 0.03 0.02
50 Centred Erdös–Rényi Model Dependence 90 quantile degree 0.74 0.89
3 Centred Erdös–Rényi Model Metric 10 quantile of degree 0.03 0
3 Centred Erdös–Rényi Model Metric 50 quantile degree 0 0
3 Centred Erdös–Rényi Model Metric 90 quantile degree 0.12 0
10 Centred Erdös–Rényi Model Metric 10 quantile of degree 0.06 0.05
10 Centred Erdös–Rényi Model Metric 50 quantile degree 0.03 0.01
10 Centred Erdös–Rényi Model Metric 90 quantile degree 0.07 0.11
50 Centred Erdös–Rényi Model Metric 10 quantile of degree 0.07 0.16
50 Centred Erdös–Rényi Model Metric 50 quantile degree 0 0.12
50 Centred Erdös–Rényi Model Metric 90 quantile degree 0.11 0.93

Table 3: Proportion of times where each diagnostic provided evidence for lack of fit. The regimes are given by the
generative model, the type of misspecification and the one dimensional summary used for the diagnostics.

N2. Experimentally determined

N3. Obtained via textmining

N4. Obtained via co-expression

These genes have been widely studied in both the systems biology and cancer research literature. Figure 3 suggests
that the set composed by {N1,N2,N3} reasonably fulfils the assumptions of our methodology. The edges of N4 have
a different interpretation, since that graph was obtained via a graphical model. Still, N4 can be interpreted as a rough
approximation of each element of {N1,N2,N3}. This data is publicly available from

://string-db.org/cgi/network.pl?taskId=PjAoqaYLxdta.

Note that nodes 15-19 are isolated. This presents no additional challenge to our methodology since we make no
assumptions regarding the connectivity of the observed networks.
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We fit the CER/CER model to the networks {N1,N2,N3} and centered the prior for the centroid at N4. Results are
summarized in Table 5 and Fig. 4. The edge sets corresponding to four networks with highest posterior probability are
displayed in Table 5. The posterior mode is displayed in Fig. 4 (Upper Left), along with summaries for α. We observed
that these four networks concentrate more than half of the posterior mass and that the posterior mode concentrates
almost 0.25 of the posterior mass. We also observed that nearly 35% of the posterior probability was spread between
models (centroids) that were visited by the MCMC only once or twice.

We also fit the SN/SN model to the data set formed by {N1,N2,N3} and centered the prior for the centroid at
the minimum spanning tree obtained from assigning random weights to the edges of the graph displayed in Fig. 4
(Upper Left). We centered the prior at this graph instead of using N4 because that graph is too far with respect to the
data in terms of the graph diffusion distance (Hammond et al. [2013]), for which the creation/merging of connected
components is expensive. In Table 6, we display the three networks with highest posterior probability. We display
the posterior mode in Fig. 4 (Upper Right), along with Summaries for γ. We observed that these three networks
concentrate almost all of the posterior mass and that the posterior mode concentrates more than half of the posterior
mass.

The presence of singletons (nodes 15-19) manifests differently in the results, depending on the metric: for the
Hamming distance, we observed that the singletons merged to the connected component formed by nodes 1-14 for
some of the posterior samples, producing a set of graphs that were visited once or twice by the MCMC, in contrast,
when we specified the model in terms the diffusion distance, connected components do not tend to merge or split,
which made the set of singletons (nodes 15-19) to remain constant across the MCMC samples.

By fitting both models, we learned that the posterior for the Fréchet mean is sensitive with respect to the metric
the model assumes for

{
G[N ]

}
; this becomes evident from comparing Tables 5 and 6 and the two panels at the top of

Fig. 4. The choice of the metric penalises discrepancies between the posterior mode and the Fréchet mean. One way
of looking at this, is that, by choosing the metric, the statistician is making decisions regarding which features of the
Fréchet mean should be retrieved when computing the posterior. This is a consequence of Proposition 3.5. For this
data, we observed an instance of a situation where there are clear differences between choosing dG(·, ·) with input
from the practitioner and/or considerations from the application (SN/SN model), and choosing the metric based on
computational or mathemathical convenience (SER /SER model).

Index Gene Index Gene Index Gene
1 BRAF 8 PTEN 15 CIC
2 NRAS 9 CDKN2A 16 DNMT3A
3 ERBB3 10 CTNNB1 17 BFXW7
4 NF1 11 TP53 18 SF3B1
5 PIK3CA 12 SMAD4 19 LPHN2
6 PIK3R1 13 APC
7 FLT3 14 NCOR1

Table 4: Key for indices assigned to the 19 genes related to cancer.
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Figure 3: [N4]: Network inferred via co-expression. The set of nodes of this network is formed by the 19 most
frequently mutated human cancer genes.
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Figure 4: Upper Left: Posterior mode from the SER/SER model applied to the data set {N1,N2,N3} and prior for the
centroid centered at N4. Centre Left: Traceplot for 500 posterior samples for α after a burn-in of 150,000 and a lag of
50. Lower Left: Histogram for α. The posterior mean (highlighted by the red solid line) is equal to 0.0192. The 95%
credible interval for α (delimeted by the dotted lines) is (0.0089,0.0342). Upper Right: Posterior mode obtained from
fitting the SN/SN model to the data set {N1,N2,N3}. This graph concentrates 0.544 of the posterior mass. Centre
Right: Traceplot for 250 posterior samples for γ after a burn-in of 100,000 and a lag of 50. Lower Right: Histogram
for log(γ). The posterior mean is equal to -4.6177. The 95% credible interval for log(γ) is (-8.4130,-2.9866).
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Posterior Probability Edge Set
0.246 1-2, 2-3, 2-4, 2-5, 2-6, 5-6, 5-7,

5-8, 5-9, 5-10, 6-10, 8-11, 9-11,
10-12, 10-13, 12-14

0.168 Emode + (3-5)
0.140 Emode + (11-13)
0.114 Emode + (6-9)

Table 5: The four networks with highest posterior mass obtained by fitting the CER/CER model to the data set
{N1,N2,N3}. Here Emode denotes the edge set for the posterior mode.

Posterior Probability Edge Set
0.544 1-2, 2-3, 2-4, 2-5, 2-6, 3-5, 5-6, 5-7,

5-8, 5-9, 5-10, 6-10, 8-11, 9-11, 9-12,
10-12, 10-13, 12-14

0.216 Emode + (3,12) + (4,6) + (6,9)− (9,12)
−(5,10)

0.188 Emode + (3,12) + (4,6)− (5,10)

Table 6: The three networks with highest posterior mass obtained by fitting the SN/SN model to the data set
{N1,N2,N3}. Here Emode denotes the edge set for the posterior mode.

7 Discussion
Network data has caught the imagination of statistical researchers and data analysis practitioners. A number of sta-
tistical models have been developed to capture the variability of realized networks, and to describe their possible
generating mechanisms, with models ranging from degree-distribution based models to block model descriptions, all
for single networks. Despite this interest a number of very fundamental questions lie unresolved in pursuing multiple
network data analysis.

To be able to understand not one network but multiple networks collected simultaneously one has to ask questions
like: a) what is the “mean” network (rather than how do we estimate the success-probabilities of an inhomogeneous
random graph), and do we want the “mean” itself to be a network? b) what is the degree of variation in realizations
away from that “mean”, and how can we make statistical inference in such scenarios? This requires a number of
modeling choices, that need to be made for us to make inferences. We in this paper have designed a modular framework
that allows us to specify each component, and thus to model.

The modular framework can be compared to the modelling framework of others, such as [Newman, 2018, Le et al.,
2018, Chang et al., 2018, Durante et al., 2017, Peixoto, 2018]. In comparison to Durante et al. [2017], for example,
we adopt a less flexibly nonparametric approach but allow for our notion of an average or typical network to have
complex structure; relative to the approach of [Newman, 2018, Le et al., 2018, Chang et al., 2018, Peixoto, 2018], by
contrast, our parametrisations are more complex while we adopt a similarly simple characterisation of perturbations
from the typical network.

Our choice can be compared to the analogous choice for non–parametric function estimation, where the mean
function is often left mainly unspecified (or even just restricted to a form of regularity such as Besov regularity). The
noise or perturbation from that network we chose to be very simple, normally just uncorrelated white noise. This
could be construed as the Goldilocks principle at work, where things are made complex, but not too complex, rather
just right in their complexity to capture realistic features. Of course statisticians can argue if structure should be
placed in the mean or covariance of observations (an often discussed topic for functional data analysis), but just like
in nonparametric function regression, we choose to put complexity in the mean.

Whilst some of the machinery we use is borrowed from statistical shape analysis; for example Propositions 3
and 4 that establish consistency; other machinery follows straight from exponential family (and Gibbs’ distributions),
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and information theory [Mézard and Montanari, 2009]. Both shape theory and general distributions placed on discrete
spaces are important for our methodology. Recent developments have been considerable in our understanding of Gibbs
distributions [Dereudre and Lavancier, 2017, Van Enter et al., 1993]. They have been readily adopted for the inference
of spatial point processes [Rajala et al., 2018], and are a flexible specification of graph distributions.

The use of the Fréchet mean as a parameter that encodes what the centre of the distribution is supposed to be,
as well as the use of the entropy to encode the notion of dispersion, are insights that we borrow exactly from shape
theory [Dryden and Mardia, 1998]. From functional data analysis, we adopt the rationale of using a complicated
object (a network without a pre-specified structure) to model the trend, while using a simple model to account for the
error. The trade-off between the complexity of the trend and the complexity of the error distribution has been widely
studied in the functional data analysis literature; a similar tension will arise in our context. This remains a topic for
exploration and/or future developments. One interesting challenge that arises in the context of network data is that
there is a lot to be learned regarding which metric in graph space should be adopted for a given problem. This is an
interesting contrast to functional data analysis, since in that context, practitioners are more familiar with the idea of
pairing a specific metric to a given application (such as the l2 norm for signal processing).

The main limitations of our approach include: i) the fact that we are assuming that a single network can function
as a representative for the data; the observed networks can, in principle belong to two or more different populations;
ii) in our approach, we assume that all the graphs are fully observed, this does not need to be the case: networks can
be partially observed due to missingness or more intricate sampling; iii) the error distribution that we assumed can in
some instances be too simplified for some applications.

In contrast to the methodology proposed by Durante et al. [2017], which focuses on clustering, our methodology in
turn is designed for providing summaries that are easy to interpret in the context of replication and on prior elicitation,
in addition, our methodology makes explicit what the estimand for a central network is, instead of just providing an
estimator with no obvious estimand associated to it. The main advantage of our method with respect to approaches
that use the idea of a Fréchet mean as a centre, but derive the uncertainty around that centre via asymptotics (Ginestet
et al. [2016]) are: i) that our method enables the statistician to propagate uncertainty to subsequent inferences, since
we are able to sample from a posterior, and ii) our method is not constrained to use of a single metric, in contrast to
Ginestet et al. [2016], which relies on a specific metric to derive the asymptotic results they need. In a broad sense,
this last point also applies to the approach proposed by Durante et al. [2017], since their MCMC scheme relies heavily
on the metric induced by a random dot product model to take advantage of conjugacy.

Future work includes: i) to develop methodology that enables the use of mixture distributions at the level of the
centroid network. There are two possibilities for achieving this: to specify the number of elements in the mixture
(hierarchical model approach) or to leave the number of elements unspecified (the Bayesian nonparametric approach);
ii) to extend the current methodology to allow for missing data and/or partial observation of the network due to
sampling. This would raise interesting challenges, since in our approach the network is treated as the observational
unit; iii) to constrain the structure of the centroid by using a parametric model (such as Peixoto [2018], Newman
[2018]), or to impose specific constrains on graph features of the centroid. Such an extension demands a formulation
in terms of hierarchical models. By constraining the possible values for the centroid, we should be able to propose
richer models for the error distribution.

From our perspective, to get a better understanding of the trade-offs between imposing structure on the centroid
versus imposing structure for the error distribution is a promising area for future research. It is not straightforward to
anticipate which combinations of assumptions for the centroid and the error distribution will lead to useful models,
since, both, the use of metrics on a graph space and the use of random graphs as error models have not been explored
from a statistician’s perspective.
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A Proofs
Proof of Proposition 3.1
Let G1 and G2 in

{
G[N ]

}
. Here Gm ∈

{
G[N ]

}
is fixed and dH(·, ·) denotes the Hamming distance. Let Ne =

(
N
2

)
be

the total number of edges possible in the graph. It follows:

p (G1|Gm, α)

p (G2|Gm, α)
=

αdH(G1,Gm)(1− α)Ne−dH(G1,Gm)

αdH(G2,Gm)(1− α)Ne−dH(G2,Gm)

=

(
α

1− α

)dH(G1,Gm)−dH(G2,Gm)

,

=

(
1− α
α

)dH(G2,Gm)−dH(G1,Gm)

.

If 1 > α > 0.5, then 1−α
α > 1. Under this condition, dH(G2,Gm) > dH(G1,Gm) if and only if:

p (G1|Gm, α)

p (G2|Gm, α)
> 1. (11)
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Since dH(·, ·) is a metric, this reasoning implies that the distribution p(·|Gm, ) is unimodal. The proof for the case
dH(G1,Gm) = dH(G2,Gm) follows mutatis mutandis.

Our second task is to show that the Centred Erdös–Rényi graph defined on
{
G[N ]

}
fulfills Definition 3.2. For

this, we need to investigate how the entropy HCER(Gm,α) of the distribution relates to α. Remember that, if X and Y
are independent random variables, then the entropy of their joint distribution HX,Y and the entropy of the individual
variables (HX and HY ) relate as follows:

HX,Y = HX +HY .

as explained in Following Mézard and Montanari [2009], Section 1.2. The CER model with parameters (Gm, α) can
be represented as a random vector of size Ne = (N−1)N

2 , where entries iid Ber(α). Therefore, the entropy of the CER
with parameters (Gm, α) is given by:

HCER(Gm,α) = −Ne × [(1− α) log(1− α) + α log(α)] .

Since
∂

∂γ
HCER(Gm,α) = −Ne ×

[
log

(
α

1− α

)]
,

we conclude that the entropy of the distribution is a strictly increasing function of α in [0, 0.5], with HCER(Gm,α) = 0

and such that the maximum entropy is reached at α = 0.5, for which all elements in
{
G[N ]

}
are assigned equal mass

(See Example 1.6 from Mézard and Montanari [2009] (2009)). This computation implies that part (2) of Definition
3.2 is fulfilled. Part (1) of Definition 3.2 is fulfilled since the proof that CER model satisfies Definition 3.1 was carried
out for α specified and no property of Gm was invoked or constrain on it was imposed.

Proof of Proposition 3.2 Let us start from the PMF of the graph. Let N be the number of nodes in the graph, and
Ne the total number of possible edges. Let nj be the number of switches of Gj away from Gm. We can then write

p (Gj |Gm, α) = αnj (1− α)
Ne−nj

= exp {nj log(α) + (Ne − nj) log(1− α)}

= exp{Ne log (1− α)} exp

{
nj log

(
α

1− α

)}
. (12)

We note directly that
nj = ‖AGj −AGm‖H = dH(Gj ,Gm).

We note that

p (Gj |Gm, α) = exp{Ne log (1− α)} exp

{
dH(Gj ,Gm) log

(
α

1− α

)}
.

We therefore see that we have
φ(x) = x,

with γ = log(1−α
α ), or eγ = 1−α

α , or 1/α = eγ + 1. Thus

α =
1

1 + eγ
⇒ 1− α =

eγ

1 + eγ
⇒ log(1− α) = γ − log(1 + eγ).

and so

p (Gj |Gm, γ) = exp{Ne log (1− α)} exp(−γφ(dH(Gj ,Gm)))

= exp{Ne [γ − log(1 + eγ)]} exp(−γφ(dH(Gj ,Gm)))

=
exp{Neγ}
(1 + eγ)Ne

exp(−γφ(dH(Gj ,Gm))) (13)

Thus the CER is a member of the spherical network family (Definition 3.4). We find with the abbreviations Centered
Erdős–Renyi (CER), Spherical Network Family (SNF), Unimodal network Distriution based on location (UDL), as
well as unimodal network distriution based on location and scale (UDLS), that there is a natural nestedness

CER ∈ SNF ⊂ UDLS ⊂ UDL. (14)
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From these, the only inclusion that requires some qualification is SNF ⊂ UDLS. This point is addressed in Proposition
3.3.

Proof of Proposition 3.3 First, we will prove that Spherical Network Family defined on
{
G[N ]

}
fulfills Definition

3.1. We start with property (2). Let (Gm, γ) be pre-specified. Let G1 and G2 be such that:

dG(G1,Gm) > dG(G2,Gm), (15)

or G1 is further from Gm than G2.
The Spherical Network Family is a Boltzmann distribution on the space of graphs. Boltzmann (or Gibbs) distribu-

tions take the form of
p(G | Gm, γ) = Z−1(Gm, γ) exp {−γφ(dG(G,Gm))} , (16)

where Z−1(Gm, γ) is a normalizing constant (Z(Gm, γ) is the partition function) and γ > 0. We note that maximum
entropy is approached as γ → 0 (when the distribution becomes uniform) and the distribution degenerates to a point
mass at Gm as γ →∞. This means that, in the limit cases, the model has the desired behaviour.

The relationship of (15) occurs if and only if

φ(dG(G1,Gm)) > φ(dG(G2,Gm)

⇐⇒ −γφ(dG(G1,Gm)) < −γφ(dG(G2,Gm))

⇐⇒ exp {−γφ(dG(G1,Gm))} < exp {−γφ(dG(G2,Gm))}
⇐⇒ p(G1 | Gm, γ) < p(G2 | Gm, γ),

as exp {·} is a strictly increasing function and the constants of proportionality cancel. The argument for the equality
case follows mutatis mutandis.

We now proceed to prove Definition 3.1(1) holds: Let G1 6= Gm, then dG(G1,Gm) > 0 since dG(·, ·) is a metric.
It follows that dG(G1,Gm) > dG(Gm,Gm), since dG(Gm,Gm) = 0. We conclude that:

p(G1 | Gm, γ) < p(Gm | Gm, γ),

which shows that Gm is a mode and that the mode is unique.
Second, we will prove that Spherical Network Family defined on

{
G[N ]

}
fulfills Definition 3.2, that is, that the

parameter γ controls the entropy of the distribution. This is to achieve the analogy of a Gaussian distribution. The
parameter γ is indexing the family of distributions that we study. Any member of the family is characterised by its
entropy. We want the indexing to be such that if γ increases, the entropy decreases, and the distribution becomes better
concentrated.

To be able to understand the spherical network family, we shall study the so-called Boltzmann or Gibbs distribu-
tions. Boltzmann distributions are common in statistical mechanics, and further discussed in [Mézard and Montanari,
2009], Section 2.2. The SNF falls in this class, as is directly apparent from Definition 3.4.

Our next objective is to investigate the entropy of the spherical network family. We first introduce some notation.
Let:

K(G,Gm, γ) = exp {−γφ [d(G,Gm)]} ;

this function is decreasing in γ. Let:

Z(Gm, γ) =
∑

G∈{G[N]}
exp {−γφ [d(G,Gm)]} .

denote the partition function. It follows that both Z(Gm, γ) and log {Z(Gm, γ)} are decreasing in γ, as Z(Gm, γ) is
the sum of decreasing functions.
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The entropy of a member of the spherical network family is given by:

HSNF = −
∑

G∈{G[N]}
p(G | Gm, γ) log {p(G | Gm, γ)}

= −
∑

G∈{G[N]}
p(G | Gm, γ) log

{
1

Z(Gm, γ)
exp {−γφ [d(G,Gm)]}

}

= −
∑

G∈{G[N]}
p(G | Gm, γ) [log {K(G,Gm, γ)} − log {Z(Gm, γ)}]

= log {Z(Gm, γ)}+ γ
∑

G∈{G[N]}
φ [d(G,Gm)] p(G | Gm, γ)

= log {Z(Gm, γ)}+ γ × E {φ [d(G,Gm)]} . (17)

The next task is to determine under which conditions, the entropy of the spherical network family is decreasing in γ.
We introduce some additional notation. Let F (γ) denote the free energy:

F (γ) = − 1

γ
log {Z(Gm, γ)} .

The following identity is a standard result for the Boltzmann distribution Mézard and Montanari [2009], p. 25-29.

E {φ [d(G,Gm)]} =
∂

∂γ
[γF (γ)] ,

which implies

E {φ [d(G,Gm)]} = − ∂

∂γ
log {Z(Gm, γ)} . (18)

We now compute the derivative of the entropy of the spherical network family with respect to γ. From Equation 17,
we have:

∂

∂γ
HSNF =

∂

∂γ
log {Z(Gm, γ)}+

∂

∂γ
[γ × E {φ [d(G,Gm)]}]

= −E {φ [d(G,Gm)]}+ E {φ [d(G,Gm)]}+ γ × ∂

∂γ
E {φ [d(G,Gm)]} (19)

= γ × ∂

∂γ
E {φ [d(G,Gm)]} , (20)

where the equality in Expression 19 follows from applying Equation 18. By definition,

E {φ [d(G,Gm)]} =
1

Z(Gm, γ)

∑
G∈{G[N]}

φ [d(G,Gm)] exp {−γφ [d(G,Gm)]} . (21)

From Equation 21, we obtain that ∂E{φ[d(G,Gm)]}
∂γ is equal to

−∂Z(Gm,γ)
∂γ

Z(Gm, γ)2

∑
G∈{G[N]}

φ [d(G,Gm)]K(G,Gm, γ) +
1

Z(Gm, γ)

∑
G∈{G[N]}

(−1)φ2 [d(G,Gm)]K(G,Gm, γ).

Therefore

∂E {φ [d(G,Gm)]}
∂γ

=
−1

Z(Gm, γ)

∑
G∈{G[N]}

(
φ [d(G,Gm)] +

∂Z(Gm,γ)
∂γ

Z(Gm, γ)

)
φ [d(G,Gm)]K(G,Gm, γ)

= −E {(φ [d(G,Gm)]− E {φ [d(G,Gm)]})φ [d(G,Gm)]} (22)
= −Var {φ [d(G,Gm)]} < 0. (23)
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Here, Equation 22 follows from Equation 18. By applying Equation 23 to Equation 20, we obtain

∂

∂γ
HSNF = −γ × Var {φ [d(G,Gm)]} < 0. (24)

It follows that the spherical network family is parametrized in terms of Gm, which is the mode of the distribution, and
γ, which is a monotone function of the entropy as long as p(· | Gm, γ) is not a point mass. We also have that each
of these parameters can be specified without constrains imposed by the other, therefore Definition 3.2 is satisfied. For
further understanding of the behaviour of the entropy as a function of α we refer to the Proof of Proposition 3.1, earlier
in this appendix.

Proof of Proposition 3.4 Let N ≥ 2. This means that AGm has at least one entry in its upper-triangular section,
outside of the diagonal; this also means that there is at least one graph G1 ∈, such that G1 6= Gm. For both, the
Hamming distance and the diffusion distance, we have:

d(Gm,Gm) = 0 and 0 < d(Gm,G1) <∞,

and
p(Gm | Gm, γ) > p(G1 | Gm, γ) > 0,

for both models. Remember that, for the CER, γ is a function of α ∈ (0, 1). It follows, that E {d(G,Gm)} > 0 and
therefore Var {d(G,Gm)} > 0.

Proof of Proposition 3.5 For n observations {y1, . . . yn} from
{
G[N ]

}
The sample Frechét mean is given by:

ψ̂n = arg min
ψ∈Y

1

n

n∑
i=1

d(yi, ψ)2; (25)

see Eqn 1. By sampling elements of
{
G[N ]

}
via a distribution with full support, each individual expectation in Eqn 1

is the limit of the corresponding sample mean. These sample means are part of the computation in Equation 25.
Let ψ be an element of

{
G[N ]

}
such that E(d2(Y, ψ)) is finite. We only need to considers those ψ ∈

{
G[N ]

}
for

which the expectation is finite, since, both, the Frechét mean and the sample Frechét mean are obtained by computing
the minimum. Note that, if E(d2(Y, ψ)) =∞ for all ψ ∈

{
G[N ]

}
, the assumption of a unique Frechét mean would not

be fullfilled. Let n be the number of observed networks, note that, as n→∞:

1

n

n∑
i=1

d(yi, ψ)2 → E(d2(Y, ψ)), a.s. for all ψ ∈
{
G[N ]

}
such that E(d2(Y, ψ)) <∞,

by the Strong Law of Large Numbers, as d2(Y, ψ) is a scalar. Here, ψ is fixed and the yi’s are random. This argument
tells us that each individual expectation is the limit of the corresponding sample mean, the next part of the argument is
to prove that all the expectations in Equation Eqn 1 can be estimated simultaneously with enough accuracy (encoded
by ε), so the minimization entailed by 25 can be carried out without errors with high probability.

For every ψ ∈
{
G[N ]

}
and all ε > 0 and δ ∈ (0, 1), there exists N(ε, δ) ∈ N such that:

Pr

{∥∥∥∥∥ 1

n

n∑
i=1

d(yi, ψ)2 − E(d2(Y, ψ))

∥∥∥∥∥ < ε

}
> 1− δ,

for all n > N(ε, δ). Since
{
G[N ]

}
is finite, this is true for

ε <
1

2
min

(ψ1,ψ2)∈{G[N]}×{G[N]}

∥∥E(d2(Y, ψ1))− E(d2(Y, ψ2))
∥∥ ,

and 0 < δ < 1 pre-specified, for all ψ ∈
{
G[N ]

}
. This is, we can make the noise of the sampled means smaller

than any pairwise difference of the expectations, for ψ1, ψ2 in
{
G[N ]

}
. Since

{
G[N ]

}
is finite, we can make N(ε, δ)

constant with respect to ψ ∈
{
G[N ]

}
by taking the maximum. This means, that for all n > N(ε, δ),

Pr
{
ψ̂n = ψm

}
= 1− δ,
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where ψm is the Fréchet mean, which we assumed to be unique. This is because, for n ≥ N(ε, δ), each expectation
can be approximated with enough precision that the optimization can be carried out without error with high probability.

Proof of Proposition 3.6 The objective is to prove that, for the CER with parameters (Gm, γ), the mode Gm
coincides with the Fréchet mean. We divide the proof into two parts: for the first part, we provide a condition for
when the inner product between a s−dimensional vector a with non-negative entries and a pmf w is minimized, where
the optimization is taken over all permutations of indices for the entries of a, i.e., {1, 2, . . . , s}; for the second part,
we prove that taking the expectation of the distances with respect to a graph Gk for the CER(Gm, α) is an example of
the setup described in the first part, even more, the permutations of the vector of distances involved in computing the
expectation, correspond to different choices for Gk. We conclude by proving that the minimum of the expectation is
attained at Gm.

Part 1
Let a and w be vectors with s entries, in addition, let w be such that wi > 0 and

∑
wi = 1 and a be such that ai ≥ 0.

Let σ be a permutation of {1, 2, . . . , s} such that wσ[i] ≥ wσ[j] for every pair {i, j} with i < j. Let τ be a permutation
of {1, 2, . . . , s} such that aτ [i] ≤ aτ [j] for every pair {i, j} with i < j. Therefore, τ fullfils:

τ = arg min
ϕ∈Sym(s)

∑
aϕ[i] × wσ[i]

where Sym(s) denotes the set of permutations over s indices.

We proof the last statement by induction:

for s = 2 : Let us start with the case aτ [1] < aτ [2] and wσ[1] > wσ[2]. Since the entries of w are nonegative and add
to 1, it follows that wσ[1] >

1
2 > wσ[2]. Therefore

aτ [1] × wσ[1] + aτ [2] × wσ[2] (26)

is closer to aτ [1] than it is to aτ [2]. If one permutes the indices of aτ to obtain a new vector aτ ′ , then, it follows
that

aτ ′[1] × wσ[1] + aτ ′[2] × wσ[2] (27)

is closer to aτ [2] than it is to aτ [1]; one way to visualize this argument is to note that Expressions 26 and 27
correspond to convex linear combinations of two non-negative numbers, namely (aτ [1], aτ [2]) and the statements
about closeness correspond to the size of the weights (wσ[1], wσ[2]) . Since aτ [1] < aτ [2], the condition is
fulfilled. For the cases where either aτ [1] = aτ [2] or wσ[1] = wσ[2], it is trivial to show that the condition is
fulfilled.

for s = k : Let us assume that the result holds for s = k.

for s = k + 1 : We consider two cases, which are defined in terms of the existence of fixed points of τ .

Case 1. At least one entry in aτ remains fixed.

WLOG we can assume that the entry of aτ that remained invariant is the (k + 1)−th. We can re-normalize the
first k entries of wσ by making

w′σ[i] =
wσ[i]

1− wσ[k+1]
.

Since w′σ[i] ≥ w′σ[j] for all 1 ≤ i < j ≤ k, we can apply the hypothesis of induction to the first k entries of aτ ,
aτ ′ and wσ to obtain

k∑
i=1

aτ [i] × w′σ[i] ≤
k∑
i=1

aτ ′[i] × w′σ[i]. (28)

Equation 28 is valid for any permutation τ ′ that leaves the k+1 entry unchanged when compared to τ . Therefore

k∑
i=1

aτ [i] × wσ[i] ≤
k∑
i=1

aτ ′[i] × wσ[i]
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since we only need to multiply w′σ by a positive constant, namely 1−wσ[k+1]. We assumed aτ [k+1] = aτ ′[k+1],
it follows that

k+1∑
i=1

aτ [i] × wσ[i] ≤
k+1∑
i=1

aτ ′[i] × wσ[i].

We conclude that τ minimises
∑
aτ [i] × wσ[i] for all the permutations that leave at least one entry unchanged

with respect to τ .

Case 2. We now consider the case where no entry of aτ was left invariant by a new indexing τ ′. Let aτ? be
the vector that results from permuting two entries of aτ ′ so the (k + 1)−th entry of aτ? coincides with the
(k + 1)−th entry of aτ . By applying an argument analogous to the one made for k = 2, we obtain:

k+1∑
i=1

aτ?[i] × wσ[i] ≤
k+1∑
i=1

aτ ′[i] × wσ[i].

Now, since at least the (k + 1)−th entry of aτ? coincides with the (k + 1)−th entry of aτ , we have

k+1∑
i=1

aτ [i] × wσ[i] ≤
k+1∑
i=1

aτ?[i] × wσ[i],

therefore the conclusion is valid for this case also.

Part 2
We start by proving that, given N ∈ N, the number of graphs in

{
G[N ]

}
such that dH(G,Gm) = h, where h ∈

{1, 2, . . . , Ne}, is constant with respect to Gm. Having dH(G,Gm) = h implies that h entries of the adjacency matrix
of Gm were modified. This is equivalent from choosing h entries from the upper triangular of the adjacency matrix of
Gm. Since the graphs are labelled, the number of graphs such that dH(G,Gm) = h is

(
Ne

h

)
, which is constant with

respect to Gm. The same argument can be made for every value of h ∈ {1, 2, . . . , Ne}.

The expectation E
{
d2
H(G,Gk)

}
for a CER with parameters (Gm, α) can be computed as follows:

E
{
d2
H(G,Gk)

}
=
∑
i∈I

d2
H(Gi,Gk)× p(Gi | Gm, α),

where I is an indexing for
{
G[N ]

}
such that p(Gi | Gm, α) ≥ p(Gj | Gm, α) for i < j. Given the fact that the number

of graphs in
{
G[N ]

}
that fulfill dH(G,Gm) = h is constant with respect to Gm for every h ∈ {1, 2, . . . , Ne}, the vector(

d2
H(G1,Gk), d2

H(G2,Gk), . . . , d2
H(G|{G[N]}|,Gk)

)
is obtained from permuting the entries from(

d2
H(G1,Gm), d2

H(G2,Gm), . . . , d2
H(G|{G[N]}|,G

m)
)
,

Now:
E
{
d2
H(G,Gm)

}
=
∑
i∈I

d2
H(Gi,Gm)× p(Gi | Gm, α). (29)

The vectors on the right side of Equation 29 and the indexing I fulfill the assumptions of Part 1 (see proof of Proposi-
tion 3.1). This implies that Gm is the Fréchet mean for the CER with parameters (Gm, α).

B Diagnostics for Bayesian Models
Posterior predictive checks (Gelman et al. [1996]) are based on following the intuition: if the model assumptions are
reasonable, the observed value of a statistic should, with low probability, be extreme with respect to the predictive
distribution for that statistic. One way to translate this intuition to our context is the following: Let η(0) be a one-
dimensional summary of the observed networks {G1,G2, . . . ,Gn} (e.g., the average diameter, the average number of
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communities). Obtain K Monte Carlo data sets
{
G(i)

1 ,G(i)
2 , . . . ,G(i)

n

}
, 1 ≤ i ≤ K, from the posterior predictive

distribution. For each of these data sets, we compute η(i), a realisation of the predictive distribution of the one-
dimensional summary, 1 ≤ i ≤ K. If η(0) is extreme with respect to the Monte Carlo predictive distribution implied
by
{
η(i)
}

1≤i≤K , then we can regard this as evidence for lack of fit.
The Bayesian χ2 was proposed by Johnson [2004] and it is based on the following rationale: Each sample from

the posterior (Gm,(i), γ(i)) entails the distribution of a univariate summary Y , i.e.,

(Gm,(i), γ(i))→ FY (· | Gm,(i), γ(i)).

In the context of multivariate modelling for networks, such summary is a descriptive statistic that can be computed
efficiently, e.g., the mean of the degree distribution. Let (y1, y2, . . . , yn) be the observed values for this summary, with
Gs → ys. Given a partition

0 = a0 < a1 < · · · < aD−1 < aD = 1,

of the interval [0, 1), we can compute the counts

C
(i)
k =

n∑
j=1

I[ak−1,ak)(FY (yj | Gm,(i), γ(i))),

for k ∈ {1, 2, . . . , D}. Let pk = ak − ak−1, then

RB(Gm,(i), γ(i)) =

D∑
k=1

(
C

(i)
k − npk√
npk

)2

measures the discrepancy between the observed and expected counts for the bins [ak−1, ak), k ∈ {1, 2, . . . , D}.
Goodness-of-fit is assessed via q/q plots of RB(·) with respect to a χ2 with D − 1 degrees of freedom.
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