

Edinburgh Research Explorer

Attainment Regions in Feature-Parameter Space for High-Level
Debugging in Autonomous Robots
Citation for published version:
Smith, SC & Ramamoorthy, S 2021, Attainment Regions in Feature-Parameter Space for High-Level
Debugging in Autonomous Robots. in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Institute of Electrical and Electronics Engineers (IEEE), pp. 6546-6551, 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems , Prague, Czech Republic, 27/09/21.
https://doi.org/10.1109/IROS51168.2021.9636336

Digital Object Identifier (DOI):
10.1109/IROS51168.2021.9636336

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Jun. 2022

https://doi.org/10.1109/IROS51168.2021.9636336
https://doi.org/10.1109/IROS51168.2021.9636336
https://www.research.ed.ac.uk/en/publications/52ad135b-4330-453d-9caf-039f9ce9c0c6

Attainment Regions in Feature-Parameter Space for High-Level
Debugging in Autonomous Robots

Simón C. Smith and Subramanian Ramamoorthy1

Abstract— Understanding a controller’s performance in dif-
ferent scenarios is crucial for robots that are going to be
deployed in safety-critical tasks. If we do not have a model of
the dynamics of the world, which is often the case in complex
domains, we may need to approximate a performance function
of the robot based on its interaction with the environment. Such
a performance function gives us insights into the behaviour of
the robot, allowing us to fine-tune the controller with manual
interventions. In high-dimensionality systems, where the action-
state space is large, fine-tuning a controller is non-trivial. To
overcome this problem, we propose a performance function
whose domain is defined by external features and parameters
of the controller. Attainment regions are defined over such
a domain defined by feature-parameter pairs, and serve the
purpose of enabling prediction of successful execution of the
task. The use of the feature-parameter space –in contrast to
the action-state space– allows us to adapt, explain and fine-
tune the controller over a simpler (i.e., lower dimensional)
space. When the robot successfully executes the task, we use
the attainment regions to gain insights into the limits of the
controller, and its robustness. When the robot fails to execute
the task, we use the regions to debug the controller and find
adaptive and counterfactual changes to the solutions. Another
advantage of this approach is that we can generalise through
the use of Gaussian processes regression of the performance
function in the high-dimensional space. To test our approach,
we demonstrate learning an approximation to the performance
function in simulation, with a mobile robot traversing different
terrain conditions. Then, with a sample-efficient method, we
propagate the attainment regions to a physical robot in a similar
environment.

I. INTRODUCTION

Many interesting tasks in autonomous robotics include
scenarios where the interaction between the robot and the
environment involves complex and non-linear dynamics. This
complexity makes it hard the have access to an explicit
model of the dynamics. One way to cope with the lack of
a model is to use model-free learning techniques. In this
learning paradigm, control policies are learned directly from
the interaction of the robot and the environment. Examples
of these techniques include model-free RL (Reinforcement
Learning) and supervised learning like LfD (Learning from
Demonstration) [1], [2]. In these methods, the robot interacts
with the environment by choosing actions through a combi-
nation of exploration and exploitation policies, or by being
guided by a supervisor.

This work was supported by EPSRC funding for the ORCA Hub
(EP/R026173/1, 2017-2021).

1S. C. Smith and S. Ramamoorthy are with the Institute of Perception,
Action and Behaviour, School of Informatics, The University of Edinburgh,
10 Crichton Street, EH8 9AB, UK. SCS is also with the Adaptive & Intelli-
gent Robotics Lab at Imperial College London. {artificialsimon,
s.ramamoorthy}@ed.ac.uk

Another approach is to approximate the dynamics based on
data from interaction between the robot and the environment.
Learning this approximation is not trivial as the dynamics
may include non-linearities, hidden variables, and intractable
spaces.

In feedback control, a controller chooses actions based
on the perceived state of the environment and some internal
parameters. These types of controllers are usually described
as a function of the action-state space. In a model-free
paradigm, after the execution of the task, a data point in the
action-state space can be mapped to a performance value.
An example would be a reward signal that depends on the
final position of the robot in the environment. Based on
the performance, the action-state space can be divided into
subsets with different properties. These divisions, or regions,
have been used to produce hierarchies of safe workspace
regions where the system remains within the region and
converges to the goal [3]. Other uses of these regions are
viability kernels or backward-reachable sets [4], [5], where
an agent can safely explore the action-state space without
reaching a failure state. In general, these regions can be
used for robust control, explainability, and to fine-tune of
the controller.

Such region analysis on the action-state space can be
intractable for high-dimensional systems. Most realistic sys-
tems and tasks would indeed involve high-dimensionality
of the state-action space. Some approaches to learning the
performance function in high-dimensional systems involve
neural networks (NNs). The drawback of using such NN
architectures is that the regression performance comes at the
computational cost of requiring large training data sets, and
inscrutability of the decisions. Another approach to learning
erformance function is Gaussian process (GP) regression [4].
GPs can be used to model the dynamics by making assump-
tions over the data distribution, but their use can be restricted
to lower-dimensional domains.

In this work, we propose to learn the performance of the
system based on features of the state and parameters of the
controller. We define attainment regions over the domain of
the performance function as the set of feature-parameter pairs
that produce a successful execution of the task. A feature-
parameter pair represents the initial conditions of a single
execution of the task. If the result of the execution of the task
is a success, the initial condition pair is part of the attainment
region. Thus, we can identify the attainment regions in a
model-free way.

Compared to the action-state space, the feature-parameter
space can represent subsets or regions of the former using

ar
X

iv
:2

10
8.

03
15

0v
1

 [
cs

.R
O

]
 6

 A
ug

 2
02

1

a reduced number of variables, hence allowing the use of
learning architectures that are not too expensive. Features
can represent patterns that are common to a set of states.
For example, images belonging to a training set can be
encoded as a small number of features obtained in the latent
space of a VAE (variational autoencoder [6]), thus reducing
the dimensions of the original state space. In the case of
controller parameters, such as for a Proportional-integral-
derivative (PID) controller, the selection of actions can be
represented by only three parameters. However, this isn’t
directly connected to the environment. The use of features
and parameters allow us to study the behaviour in a way
that connects this to the environment. Another advantage
of using features is the ability to interpolate between states
realistically. The interpolation allows the generalisation of
the controller and the estimation of the performance in a
scenario that has not yet been experienced. Also, debugging
can benefit from this simplified representation. For example,
a single dimension of the latent space can identify a full
region of the original state space. In this case, we show how
we can tune a controller trained only with simulated data
for a physical system with only a few samples in the real
environment.

There are several advantages to modelling the behaviour
of the robot with attainment regions. These regions allow us
to understand the limits of the operating regime of the robot.
A larger region is more robust to external perturbations than
a smaller one. The use of features instead of states allows the
system to generalise in performance estimation to states that
have not been experienced. As the attainment region and its
boundaries can be represented graphically, system designers
can debug the system. For example, identifying combinations
of features and parameters that require a more detailed con-
trol policy. As the system assumes that any point outside the
attainment region does not result in a successful trial, we can
search for the shortest path in parameter-space between the
failure point and the attainment region. The controller can use
the proposed parameters to change its internal configuration
and adapt for a successful trial. Another type of solution
in the case of a failed execution is based on the smallest
modification of the state to produce a successful trial. These
solutions are termed counterfactuals and are usually out of
the reach of the robot. For example, a counterfactual can
propose a modification of the environment that requires
human intervention. In this case, the counterfactual serves
as an explanation of a failure case.

We test our system with a four-wheeled robot with the task
of travelling across a ramp at different inclinations and with
different contact materials. The material of the ramp varies
between different friction coefficients, and the steepness of
the ramp can be regulated at different values. The task is
successful if the robot can traverse to the top of the ramp
within a limited time; otherwise, it is a failure. We collect
synthetic data from a simulator configured to represent the
physical environment as close as possible, including friction
coefficient for the different materials. Using a Beta-VAE on
the RGB images, we can manually select two latent variables

that best represent the materials and steepness of the ramp
as features of the state. With the simulation data, we can fit
a Gaussian process in the reduced feature-parameter space
to predict the performance of the robot based on the image
and controller gains.

After training the model with synthetic data, we apply the
same method to a physical robot. We show that we can fine-
tune a mapping between simulated and physical features.
By adjusting the attainment regions to include data collected
from the physical robot, we show that with a few samples,
the model can adapt to the real sensory-motor loop and
generalise to previously unseen configurations.

A. RELATED WORK

Defining and finding regions where the performance of
a robot is reliably known is crucial for safe deployment in
complex environments. The notion of controller robustness
is related to gain and phase regions where the robot remains
stable even when it is externally disturbed [7]. With the
calculation of disk margins, based on gain and phase regions,
and the explicit definition of the model, controllers can be de-
signed and fine-tuned [8], [9]. When there is no access to an
explicit model, sampling strategies are used to measure safety
boundaries [4], [10]. A popular approach to learning safety
boundaries is the viability kernel. These kernels represent
regions in the state space where an agent explores actions
leading to success in a specific task. By sampling from the
state space, the kernels are used in the synthesis of robust
controllers, guaranteeing performance and estimating safety
properties [11], [12]. Another objective of the region analysis
is to explain the decision process of the system [13]. When
the models have many parameters, e.g. with the use of deep
neural networks (DNN), system designers have to study them
as a black-box. In this case, one again requires sampling [14].
To study such high-dimensional systems, the authors in [15]
use features to build local models to explain the full model.
In [16], the authors exploit the feature space to measure
the robustness of robot control using counterfactuals. Other
approaches to the study of these regions are based on the
parameter space. For example, in [17], the parameter space
of a controller is partitioned by regions that verify constraints
formulated using Signal Temporal Logic. Tuning parameters
is common in PID controllers, but usually, the state space
is not considered [18]. Similarly, in dynamical systems and
probabilistic models, the parameters can be synthesised for
the system to arrive at a user-specified region [19].

In this paper, we propose learning and exploiting attain-
ment regions in feature-parameter space representing the
successful completion of a task.

II. METHOD

We define a dynamical systems in the action-state space
as s′ = f (a,s) with action a ∈ A, state s ∈ S and a transition
function f to the next state s′. Features of the state can
be defined as z = z(s) with z ∈ Z and z : S→ Z. Actions
are a function of the state and some internal parameters
to a controller Cθ , a = Cθ (s), with parameters θ ∈ Θ and

Cθ : S → A. Here, we propose a performance measure on
the feature-parameter space p : Z×Θ→{0,1}, indicating the
success or the failure of a task.

The intuition here is that both z and θ represent a subset
of S and A, respectively. For example, a single feature could
represent the position of an object in the environment. In
a task of obstacle avoidance, the position of the object
influences the final result of a trial. In the state space,
when the obstacle is perfectly aligned with the robot, it is
represented by a single state. If the obstacle is in front of the
robot but slightly shifted to one side, this is represented by a
different state. The use of features can represent a subset of
these states. For example, one variable representing the broad
position of the object either in front, to the left or the right
of the robot, thus encapsulating several states in a single
variable. In the case of actions, the parameters define the
outcome of the controller. In a trial of n steps, for a controller
with fixed parameters, the roll-out of actions during all the
steps are represented by the initial state and the parameters.
In stochastic environments, this relationship still holds, but
an approximator of p needs to address this characteristic, as
we will show next.

As we do not have access to the function p, we need
to approximate it. GP (Gaussian processes [20]) regression
can be used as a probabilistic function approximator. For
simplicity, we define x = (z,θ) with x ∈ X := Z ×Θ the
feature-parameter space. The performance function is:

y = p(x) =

{
1 if the trial is successful
0 if the trial failed.

(1)

The probabilistic estimate nature of the GP allows us to
introduce prior knowledge of the random variables and esti-
mate an uncertainty of the performance measure, in this case
coming from the stochasticity of the system. The posterior
estimate of x is normally distributed, including a set of
samples D = {(xi,yi), i = 1, . . . ,m} pairs. The estimate p̂
is conditioned on the samples p̂X (x)|D ∼N (µ(x),σ2(x)),
where N is the normal distribution, µ and σ2 are the pos-
terior mean and variance given by the covariance function.
Using an RBF (Radial Basis Function) kernel and the set
D, we can fit the parameters of the GP to approximate p.
Authors in [4] actively sample from the plant. This approach
is better suited when the sampling cost is high. In our
case, we are interested in sampling from synthetic data and
later apply it to a physical environment. In comparison, the
cost of sampling is relatively low in our approach. As the
synthetic data could deviate from the data distribution of
the physical system, our system can fine-tune the feature-
parameter space. We see this property as a debugging tool
for complex systems, and we give details about it at the end
of this section.

As the approximator p̂ can estimate the probability of
success of a trial based on an instance of x, we can define
a threshold parameter ηp that indicate the minimum value
to include x in the attainment region. We can calculate the
probability that a feature-parameter pair x belongs to the

attainable region as:

P[p̂X |D > ηp]. (2)

With this definition of the attainment region, we can find
solutions for feature-parameter instances that do not belong
to the region. Without loss of generality and using multi-
dimensional Euclidean distance, we can define a constrained
minimisation cost on the shortest path between the actual x
feature-parameter space point outside the attainment region
and an optimal point x∗ in the attainment region limit.

x∗ = argmin
x′∈X

||x−x′||. (3)

In feature space, autoencoders show an interpolation
property. The interpolation between two instances in the
latent space produces a smooth semantic warping in data
space [21]. In parameter space, non-linearities are captured
as non-continuous attainment regions, e.g. a blob in feature-
parameter space where the task fails, surrounded by an
area where the task does succeed. Using a sequential im-
portance sampling and re-sampling with attribution prior
algorithm ([22], [23]), we can find the smallest possible
change to x for a new trial to succeed with probability ηp.

We can restrict the sampling of possible solutions to either
the feature or parameter space. In this case, we have two
different families of solutions. First, the solutions on the
parameter space belong to an adaptive controller policy. At
the beginning of the trial, with p̂X (x = (z,θ)), we can esti-
mate the probability of success of the actual configuration.
Restricting the search of the optimal value to the parameter
space θ and fixing the features z, we can find an optimal set
of parameters θ ∗. Now, the controller can update its internal
representation based on θ ∗

The second family of solutions is when we search over
the feature space and fix the parameters. This solution
corresponds to a counterfactual solution [16]. In this case,
the solution is to modify the environment that will allow
the trial to succeed. Usually, the robot is not able to carry
out the counterfactual modification. If the robot were able
to apply said modification, it would be part of the original
controller. Counterfactuals give an approximation to what an
external agent (autonomous or not) should modify in the
environment for the robot to succeed. In the example of
obstacle avoidance, in a cluttered environment, where there is
no solution to avoid them, removing one or more obstacles
will allow the robot to find a solution path. This minimal
modification, outside the responsibility of the autonomous
robot, is the counterfactual solution. Counterfactuals are used
for accountability, as causes outside the responsibility of the
robot can explain why a trial has failed. Also, counterfactuals
are a debugging tool. A single counterfactual in feature space
can indicate regions in the state space where the system fails
and requires attention.

III. EXPERIMENTS & RESULTS

To evaluate our approach and to show that we can learn
the attainment regions in realistic settings, we define a task

involving a physical robot with a high-dimensional sensory-
motor loop. We work with a Clearpath Robotics Husky A200
UGV (unmanned ground vehicle). This robot us equipped
with a Multisense S7 sensor. We use the RGB camera as the
main sensor. In our experiments, the goal of the robot is to
move along a ramp with different materials and steepness.
The materials that we vary in the trials are the metal of
the ramp itself and synthetic ice. The metallic ramp is
designed to reduce slippage, while the synthetic ice has a
reduced friction coefficient. We vary the steepness of the
ramp between 0◦ and 30◦. Using a PID controller on the
angular velocity of the wheels, the task of the robot is to
travel to the end of the ramp successfully. In case that the
robot does not arrive, the task is a failure. Failure can occur
for two main reasons. First, the robot slips to a side given the
different friction from the diverse contact materials placed on
top of the ramp. The second failure cause comes from the
steepness of the ramp. The ramp angle relative to the ground
may be too high for the robot to climb it.

The three gains of the PID controller represent the parame-
ter vector θ =(KP,KI ,KD). The state features are represented
by the occurrence of synthetic ice z1 = {0,1} on the ramp
and its steepness z2 = [0,30] as the inclination in degrees with
respect to the horizontal plane. Depending on the materials:

z1 =

{
1 if there is synthetic ice
0 if there is no synthetic ice.

This function defines the feature vector z = (z1,z2) and the
feature-parameter vector as x = [z : θ].

Fig. 1 shows the setup of the physical and simulated
environment. We use the Gazebo simulator to sample the
data points to fit the Gaussian Process estimator p̂X . We
define both the set-point of the PID controller to a 40% of
the maximum angular speed of the wheels and a sampling
set for the PID gains. Combining values for z and θ , we
sample more than 400 points in the feature-parameter space.
We run a trial on the simulator for each point and collect the
performance result y (Eq. 1). The fitting of the GP was done
on a standard desktop computer and took around 1 minute to
process all the samples. Including more data points increased
the fitting time exponentially.

To make the simulation result as aligned as possible to the
physical environment, we estimate the friction coefficients
between the synthetic ice and the rubber wheels of the robot.
We sample a few trials in the physical environment and
search for the best coefficient to reproduce the same perfor-
mance results. In our experiment, we can easily estimate the
coefficient as we only have two materials. For more complex
scenarios, the authors in [24] propose a method based on
annotated data to estimate the coefficient from pixel-based
signals.

Using an RBF as the kernel for the Gaussian process
approximator, we fit p̂X with the results of the simulated
trials. By setting a confidence threshold as ηp = 0.8, we can
find the attainment regions of the feature-parameter space
where the model will predict an 80% of success rate. Fig. 2a

(a) Husky (b) Multisense camera

(c) Gazebo simulator (d) Gazebo camera

Fig. 1: (a) and (b) Physical environment and on-board camera.
Figs. (c) and (d) Gazebo simulator environment and RGB camera.

shows the attainment region in light-blue, where the robot is
expected to succeed with a probability P(y|x) ≥ 0.8. In the
same subfigure, the horizontal axis represents the angle of
the ramp for trials where we used synthetic ice. The vertical
axis represents the proportional gain KP of the PID controller.
Fig. 2b shows the attainment region when no synthetic ice
is present. Comparing Figs. 2a and 2b, we can see that
the occurrence of the ice material reduces the options in
the feature-parameters space where the robot can reach the
goal. Fig. 2c shows that a large KP (vertical axis) can be
detrimental when the low-friction material is present. The
attainment region in Fig. 2d shows that the success of the
goal depends on the occurrence of the ice and the steepness
of the ramp. Figs. 2e and 2f show that the results of the task
do not depend on KI and KD.

A. Physical Robot Implementation

As we do not have direct access to the features in a
physical setup, we need to extract them from sensors attached
to the robot. From the sensory data, we can use automatic
feature extraction methods. However, sampling directly from
a robot can be expensive. A standard way to circumvent
this limitation is to use a physical simulator and tune the
parameters to correlate the simulation results with the real
ones. Here, we propose to train a Beta-VAE [25] to encode
and decode images from an RGB camera in the simulated
environment and use its latent space as the feature space.
As the autoencoder will be trained on synthetic data, we
will use a mapping to correct any deviation in the encoding
when using real images from the camera of the physical robot
z = m(z′(s)), with z′ : S→ Z as the Beta-VAE encoding.

As we can linearly interpolate the features in an autoen-
coded latent space, we use a linear function for m. A linear
model allows us to fit its parameter with just a couple of
samples. In our experiments, this model effectively translated
the features from the simulator to the physical ones. Note that

(a) KP vs angle (ice) (b) KP vs angle (no ice)

(c) KP vs ice (d) Ice vs angle

(e) KI vs angle (no ice) (f) KD vs angle (no ice)

Fig. 2: Light-blue areas represent attainment regions. The blue
arrows represent the direction of a counterfactual solution (a) and
an adaptive one (b). The dots represent data points. Red dots are
failures, and grey ones represent successful trials. Note that at each
data point, there may be overlaps of different runs. The images are
slices of the 5-dimensional parameter-feature space. In (a), (b), (c)
and (d), the variables not shown are not restricted. In (e) and (f),
Kp has been restricted to 1.0.

this mapping allows us to carry the posterior learned during
training with the simulated system. Now, the performance
predictor in the physical system is:

p̂X (x) = p̂X ((z,θ)) = p̂X ((m(z′(s)),θ)). (4)

From the data collected during the simulated trials from
the previous step and using data augmentation techniques, we
train a Beta-VAE with the RGB images from the onboard
camera as a reconstruction target. The meta-parameters of
the autoencoder include a latent dimension of size 32,
β = 20, 5 hidden layers of convolutional filters with batch
normalisation, ReLU activation function and a dropout rate
of 0.5 in both the encoder and decoder model. Fig. 3 shows
a sample of manipulation of the latent space. Each row is
a linear modification of a latent dimension. To map the

Fig. 3: Latent space of the Beta-VAE trained with images from
the onboard camera. Two latent dimensions are selected for the
synthetic ice occurrence (red-box) and the ramp steepness (green-
box).

latent dimensions to the features used to train the Gaussian
process, we select two latent variables that best represent
the occurrence of synthetic ice and the steepness of the
ramp. In Fig. 3, the row marked with red shows the initial
decoding of the latent dimension where no white blob can
be seen, while it gradually appears when the latent variable
value is increased. The white blob in the image indicates
whether synthetic ice is present or not. In the same figure,
the green box indicates a latent variable where the height of
the ramp decreases. We associate the height of the ramp with
its steepness feature. Note that the goal of the autoencoder is
to extract the features, and it does not aim at having a perfect
reconstruction. In this experimental setup, we have used
expert knowledge to choose the features. In more general
cases, automatic selection of the features can achieve similar
results at the expense of explainability. For example, the
system could use all the latent variables in the latent space
of the autoencoder. In this case, our method would still find
the attainment regions and the solutions in parameter and
feature space. However, counterfactual solutions in feature
space could be harder to understand by the user. The features
may not have a clear representation in the environment or
may present a correlation in the data that does not necessarily
have a causal relation with the task, e.g. the sharpness of the
RGB image.

To fit the linear model, we select four images representing
the maximum and minimum steepness and the occurrence
and absence of synthetic ice in the physical environment.
Encoding each image, we obtain values in the latent space:
for the lowest angle, the value is 0.095, for the highest
angle is −1.63, for the occurrence of ice is 1.26, and for
the absence of it, a value of 0.35. With two points for each
latent dimension, we can calculate the linear mapping:

z1 = mI(x) = 1.10x−0.38, (5)
z2 = mA(x) =−17.39x+1.65, (6)

with mA and mI the functions for angle and the occurrence
of synthetic ice, respectively.

We use the attainment regions to find solutions on the
physical Husky when the prediction is ‘failure’. Using the
known PID parameters and extracting the state features from
the camera, we can estimate the outcome of a trial. If the
value is outside the attainment region, we can find a solution
either on the feature or parameter space. The simplest solu-
tion is to find the smallest modification to θ that can move
the performance prediction inside the attainment region with
fix features variables. To find this modification, we use the
sampling optimisation process [22] constrained to the prior
(p̂X) and the minimum Euclidean distance to the attainment
region. This solution correspond to moving on the parameter
space, e.g. horizontal axis on Fig. 2b blue x, from a value
of KP = 1.3 to a value in the region limit of KP = 0.8. The
controller can adapt to these new parameters online and have
a successful trial with parameters that have not been directly
experienced during training. Using the image taken from the
onboard camera, Fig. 1b, we extract the latent values and
map them with Eqs. 5 and 6 to the feature space. We define
the parameters of the controller as the feature-parameter
vector x= [z1,z2,KP,KI ,KD] = [1.09,13.53,0.05,1×10−6,0]
that fails the task. The prediction of p̂X (x) is 0.52, outside
of the attainment region. Freezing z1 and z2, the system
find the new optimal parameter θ ∗ = [0.5,0.00001,0.0] with
performance of 0.802, in the limit of the attainment region.
We test these parameters on the Husky on three trials. All
the trials succeed in the task.

The other type of solution that this system can provide are
counterfactuals. Fig. 2a blue x point shows that in an angle
around 22◦ with ice on the ramp, the Husky will fail to meet
the goal. The solution, moving on the feature space, shows
a counterfactual where reducing the angle of the ramp to 8◦

would produce a successful trial with the required minimum
performance. We can also fix the angle of the ramp, so the
system is forced to find a solution in the rest of the feature,
i.e. the synthetic ice. In this case, the solution is at z∗1 =
0.53, that using a threshold in the middle point of the linear
mapping for Eq. 5, represents the absence of ice as another
counterfactual solution.

IV. CONCLUSION

We introduce the concept of attainment regions. Through
our experiments, we have shown that these regions can
be used to achieve generalisation, robustness, explainability,
adaptability and debugging of an autonomous mobile robot in
realistic settings. These characteristics are relevant for trust-
worthy autonomous robots in critical tasks. The advantage
of our definition of attainment regions compared to analysis
of performance in action-state space comes from its compact
representation based on features and parameters. We demon-
strated extraction of features from an image-based sensory
input using autoencoders. More advanced feature extraction
techniques would facilitate even more sophisticated features

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

within the proposed methodology.
[2] S. Schaal et al., “Learning from demonstration,” Advances in neural

information processing systems, pp. 1040–1046, 1997.
[3] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-

position of dynamically dexterous robot behaviors,” The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[4] S. Heim, A. Rohr, S. Trimpe, and A. Badri-Spröwitz, “A learnable
safety measure,” in Conference on Robot Learning. PMLR, 2020,
pp. 627–639.

[5] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 2242–2253.

[6] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[7] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall
Upper Saddle River, NJ, 1998, vol. 104.

[8] S.-Y. Chu and C.-C. Teng, “Tuning of PID controllers based on gain
and phase margin specifications using fuzzy neural network,” Fuzzy
sets and systems, vol. 101, no. 1, pp. 21–30, 1999.

[9] J. D. Blight, R. Lane Dailey, and D. Gangsaas, “Practical control
law design for aircraft using multivariable techniques,” International
Journal of Control, vol. 59, no. 1, pp. 93–137, 1994.

[10] G. Piovan and K. Byl, “Reachability-based control for the active slip
model,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 270–287, 2015.

[11] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, Viability theory: new
directions. Springer Science & Business Media, 2011.

[12] A. Liniger and J. Lygeros, “Real-time control for autonomous racing
based on viability theory,” IEEE Transactions on Control Systems
Technology, vol. 27, no. 2, pp. 464–478, 2017.

[13] I. Rahwan, M. Cebrian, N. Obradovich, J. Bongard, J.-F. Bonnefon,
C. Breazeal, J. W. Crandall, N. A. Christakis, I. D. Couzin, M. O.
Jackson, et al., “Machine behaviour,” Nature, vol. 568, no. 7753, pp.
477–486, 2019.

[14] Y. Zhou, S. Booth, N. Figueroa, and J. Shah, “Rocus: Robot controller
understanding via sampling,” arXiv preprint arXiv:2012.13615, 2020.

[15] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” arXiv preprint arXiv:1705.07874, 2017.

[16] S. C. Smith and S. Ramamoorthy, “Counterfactual explanation and
causal inference in service of robustness in robot control,” 2020.

[17] C. Fan, X. Qin, and J. Deshmukh, “Parameter searching and
partition with probabilistic coverage guarantees,” arXiv preprint
arXiv:2004.00279, 2020.

[18] R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar, “A review of
PID control, tuning methods and applications,” International Journal
of Dynamics and Control, pp. 1–10, 2020.

[19] T. Dreossi, “Sapo: Reachability computation and parameter synthesis
of polynomial dynamical systems,” in Proceedings of the 20th Inter-
national Conference on Hybrid Systems: Computation and Control,
2017, pp. 29–34.

[20] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning. Springer, 2003, pp. 63–71.

[21] D. Berthelot, C. Raffel, A. Roy, and I. Goodfellow, “Understanding
and improving interpolation in autoencoders via an adversarial regu-
larizer,” arXiv preprint arXiv:1807.07543, 2018.

[22] M. Burke, S. Penkov, and S. Ramamoorthy, “From explanation to
synthesis: Compositional program induction for learning from demon-
stration,” Robotics: Science and Systems (R:SS), June 2019.

[23] S. C. Smith and S. Ramamoorthy, “Semi-supervised learning
from demonstration through program synthesis: An inspection
robot case study,” Electronic Proceedings in Theoretical Computer
Science, vol. 319, pp. 81–101, Jul 2020. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.319.7

[24] M. Brandao, K. Hashimoto, and A. Takanishi, “Friction from vision:
A study of algorithmic and human performance with consequences
for robot perception and teleoperation,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE,
2016, pp. 428–435.

[25] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “Beta-VAE: Learning basic visual
concepts with a constrained variational framework,” 2016.

http://dx.doi.org/10.4204/EPTCS.319.7

	I INTRODUCTION
	I-A RELATED WORK

	II METHOD
	III EXPERIMENTS & RESULTS
	III-A Physical Robot Implementation

	IV CONCLUSION
	References

