1,105 research outputs found

    Investigating the pre-main sequence magnetic chemically peculiar system HD 72106

    Get PDF
    The origin of the strong magnetic fields observed in chemically peculiar Ap and Bp stars stars has long been debated. The recent discovery of magnetic fields in the intermediate mass pre-main sequence Herbig Ae and Be stars links them to Ap and Bp stars, providing vital clues about Ap and Bp stars and the origin and evolution of magnetic fields in intermediate and high mass stars. A detailed study of one young magnetic B star, HD 72106A, is presented. This star appears to be in a binary system with an apparently normal Herbig Ae star. A maximum longitudinal magnetic field strength of +391 +/- 65 G is found in HD 72106A, as are strong chemical peculiarities, with photospheric abundances of some elements ranging up to 100x above solar.Comment: 8 pages, 6 figures. Proceeding of the 2006 conference of the Special Astrophysical Observatory of the Russian Academy of Science

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Globular Cluster Systems in Brightest Cluster Galaxies: Bimodal Metallicity Distributions and the Nature of the High-Luminosity Clusters

    Full text link
    We present new (B,I) photometry for the globular cluster systems in eight Brightest Cluster Galaxies (BCGs), obtained with the ACS/WFC camera on the Hubble Space Telescope. In the very rich cluster systems that reside within these giant galaxies, we find that all have strongly bimodal color distributions All the BCGs show population gradients, with much higher relative numbers of red clusters within 5 kpc of their centers, consistent with their having formed at later times than the blue, metal-poor population. A striking new feature of the color distributions emerging from our data is that for the brightest clusters (M_I < -10.5) the color distribution becomes broad and less obviously bimodal. we suggest that it may be a characteristic of many BCGs. Furthermore, the blue (metal-poor) clusters become progressively redder with increasing luminosity, following a mass/metallicity scaling relation Z ~ M^0.55. We argue that these GCS characteristics are consistent with a hierarchical-merging formation picture in which the metal-poor clusters formed in protogalactic clouds or dense starburst complexes with gas masses in the range 10^7 - 10^10 M_Sun, but where the more massive clusters on average formed in bigger clouds with deeper potential wells where more pre-enrichment could occur.Comment: 48 pages, 24 Figures, PDF, Submitted to Astrophys.J. and refereed. For complete pdf file with better figures, see: http://physwww.mcmaster.ca/%7Eharris/Preprints.htm

    Critical evaluation of magnetic field detections reported for pulsating B-type stars in the light of ESPaDOnS, Narval and reanalyzed FORS1/2 observations

    Full text link
    Recent spectropolarimetric studies of 7 SPB and β\beta Cep stars have suggested that photospheric magnetic fields are more common in B-type pulsators than in the general population of B stars, suggesting a significant connection between magnetic and pulsational phenomena. We present an analysis of new and previously published spectropolarimetric observations of these stars. New Stokes VV observations obtained with the high-resolution ESPaDOnS and Narval instruments confirm the presence of a magnetic field in one of the stars (ϵ\epsilon Lup), but find no evidence of magnetism in 5 others. A re-analysis of the published longitudinal field measurements obtained with the low-resolution FORS1/2 spectropolarimeters finds that the measurements of all stars show more scatter from zero than can be attributed to Gaussian noise, suggesting the presence of a signal and/or systematic under-estimation of error bars. Re-reduction and re-measurement of the FORS1/2 spectra from the ESO archive demonstrates that small changes in reduction procedure lead to substantial changes in the inferred longitudinal field, and substantially reduces the number of field detections at the 3σ\sigma level. Furthermore, we find that the published periods are not unique solutions to the time series of either the original or the revised FORS1/2 data. We conclude that the reported field detections, proposed periods and field geometry models for α\alpha Pyx, 15 CMa, 33 Eri and V1449 Aql are artefacts of the data analysis and reduction procedures, and that magnetic fields at the reported strength are no more common in SPB/β\beta Cep stars than in the general population of B stars.Comment: 10 pages, 5 figures, accepted for publication in ApJ, 2012, typo correcte

    A New Evolutionary Path to Type Ia Supernovae: Helium-Rich Super-Soft X-Ray Source Channel

    Get PDF
    We have found a new evolutionary path to Type Ia supernovae (SNe Ia) which has been overlooked in previous work. In this scenario, a carbon-oxygen white dwarf (C+O WD) is originated, not from an asymptotic giant branch star with a C+O core, but from a red-giant star with a helium core of 0.82.0M\sim 0.8-2.0 M_\odot. The helium star, which is formed after the first common envelope evolution, evolves to form a C+O WD of 0.81.1M\sim 0.8-1.1 M_\odot with transferring a part of the helium envelope onto the secondary main-sequence star. This new evolutionary path, together with the optically thick wind from mass-accreting white dwarf, provides a much wider channel to SNe Ia than previous scenarios. A part of the progenitor systems are identified as the luminous supersoft X-ray sources or the recurrent novae like U Sco, which are characterized by the accretion of helium-rich matter. The white dwarf accretes hydrogen-rich, helium-enhanced matter from a lobe-filling, slightly evolved companion at a critical rate and blows excess matter in the wind. The white dwarf grows in mass to the Chandrasekhar mass limit and explodes as an SN Ia. A theoretical estimate indicates that this channel contributes a considerable part of the inferred rate of SNe Ia in our Galaxy, i.e., the rate is about ten times larger than the previous theoretical estimates for white dwarfs with slightly evolved companions.Comment: 19 pages including 12 figures, to be published in ApJ, 519, No.

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    The Globular Cluster Systems in the Coma Ellipticals. II: Metallicity Distribution and Radial Structure in NGC 4874, and Implications for Galaxy Formation

    Full text link
    Deep HST/WFPC2 (V,I) photometry is used to investigate the globular cluster system (GCS) in NGC 4874, the central cD galaxy of the Coma cluster. The luminosity function of the clusters displays its normal Gaussian-like shape and turnover level. Other features of the system are surprising: the GCS is (a) spatially extended, with core radius r_c = 22 kpc, (b) entirely metal-poor (a narrow, unimodal metallicity distribution with mean [Fe/H] = -1.5), and (c) modestly populated, with specific frequency S_N = 3.7 +- 0.5. We suggest on the basis of some simple models that as much as half of this galaxy might have accreted from low-mass satellites, but no single one of the three classic modes of galaxy formation (accretion, disk mergers, in situ formation) can supply a fully satisfactory formation picture. Even when they are used in combination, strong challenges to these models remain. The principal anomaly in this GCS is essentially the complete lack of metal-rich clusters. If these were present in normal (M87-like) numbers in addition to the metal-poor ones that are already there, then the GCS in total would more closely resemble what we see in many other giant E galaxies.Comment: 27 pp. with 9 Figures. Astrophys.J. 533, in press (April 10, 2000
    corecore