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Abstract 

 

We have investigated the impact of hyaluronic acid (HA)-coating on the targeting capacity of siRNA 

lipoplexes to CD44-overexpressing tumor cells. Cellular uptake and localization of HA-lipoplexes 

were evaluated by flow cytometry and fluorescence microscopy and both methods showed that these 

lipoplexes were rapidly internalized and localized primarily within the cytoplasm. Inhibition of 

luciferase expression on the A549-luciferase lung cancer cell line was achieved in vitro using an anti-

Luc siRNA. 81% of luciferase gene expression inhibition was obtained in vitro with HA-lipoplexes 

at +/ _ ratio 2. In vivo, in a murine A549 metastatic lung cancer model, the treatment with HA-

lipoplexes carrying anti-luciferase siRNA led to a statistically significant decrease of luciferase 

expression as opposed to progressive increase with non-modified lipoplexes or NaCl 0.9%. The 

reduction of the expression of luciferase mRNA tumor of mice treated with HA-lipoplexes supported 

the inhibition effect due to siRNA. These results highlight the potential of HA-lipoplexes in CD44-

targeting siRNA delivery.  
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Introduction  

Downregulation of gene expression is a promising strategy that meets different applications in 

therapeutics. Small interfering RNA (siRNA) molecules present the inherent advantage of nucleic 

acid therapies consisting in the almost unrestricted choice of targets (Aagaard and Rossi, 2007). 

SiRNA has shown potentialities for the treatment of lung diseases including the treatment of 

inflamma-tory, immune and infectious diseases, cystic fibrosis (CF) and cancer (Nascimento et al., 

2012). However, their clinical use, even for lung diseases, is still limited due to the same obstacles 

faced by other nucleotide-based therapeutics. Indeed, siRNA are rapidly degraded by nucleases 

showing half-lives in biological fluids of the order of seconds to minutes (Soutschek et al., 2004). 

Moreover, siRNA lacks selectivity for the targeted tissue (Aagaard and Rossi, 2007; Devi, 2006; 

Fattal and Barratt, 2009; Fattal and Bochot, 2008; Nascimento et al., 2012). Within the tissues, they 

do not cross cell membranes readily because of their negative charge, hydrophilicity and molecular 

size (Dykxhoorn and Lieberman, 2006; Fattal and Barratt, 2009). To overcome these limitations and 

enable siRNA delivery to their site of action, different nanocarriers systems have been investigated, 

including the biocompatible lipid-based liposomes, or lipoplexes. It was shown that surface 

modification of liposomes with high molecular weight hyaluronic acid (HA) can improve their 

efficacy by mediating active CD44 targeting in tumors (Arpicco et al., 2013b; Dalla Pozza et al., 

2013; Glucksam-Galnoy et al., 2012; Landesman-Milo et al., 2013; Peer and Margalit, 2004a,b; 

Rivkin et al., 2010; Ruhela et al., 2014; Yang et al., 2013). HA is a glycosaminoglycan polymer 

composed of disaccharide units of N-acetylglucosamine and D-glucuronic acid linked together 

through alternating b-1,3 and b-1,4 glycosidic * Corresponding author at: Université Paris _Sud, 
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ijpharmbonds. It is biocompatible, being the major component of the extracellular matrix. The native 

high molecular weight HA is non-toxic and non-immunogenic (Laurent and Fraser, 1992). It does not 

induce expression of genes involved in proliferation or inflamma-tion (Noble, 2002) and counteracts 

proangiogenic effects of the HA oligomers (Deed et al.,1997; Dufay Wojcicki et al., 2012). At last 

but not least, HA can be utilized as an addressing molecule due to the expression of its membrane 

receptor, CD44, on tumor initiating cells (Al-Hajj et al., 2003) that are the main cells to target in order 

to avoid tumor relapse. Indeed, although some studies have focused on targeting CD44 using 

antibodies (Wang et al., 2012) or aptamers (Alshaer et al., 2015), most of them were related to the 



use of HA (Dosio et al., 2016). HA can also increase liposome circulation time due to possible 

dysopsonisation effects (Peer et al., 2003; Peer and Margalit, 2004b; Qhattal and Liu, 2011). 

Moreover, several groups have shown that it is possible to mediate siRNA delivery by 

nanotechnologies covered by HA such as polyethyle- nimine (Ganesh et al., 2013) or lipid particles 

(Landesman-Milo et al., 2013). For several years we have studied the effects of surface coverage of 

lipoplexes by HA through a HA-DOPE conjugate that is inserted within the lipoplex structure. The 

molecular organization of these lipoplexes was recently characterized (Dufay Wojcicki et al., 2012; 

Nascimento et al., 2015; Surace et al., 2009; Taetz et al., 2009). An improved and receptor-mediated 

transfection efficiency of breast and lung cancer cells overexpressing CD44 receptors was reported 

(Dufay Wojcicki et al., 2012; Surace et al., 2009). In a preliminary study, it was also shown that 

siRNA lipoplexes covered with HA could enter at a larger extent into A549 CD44+ cells than Calu-

3 CD44 _ cells (Taetz et al., 2009). However this last study did not demonstrate any inhibition effect 

provided by the siRNA. This is the reason why the aim of the present report was to provide evidences 

of success of such a strategy. HA-DOPE modified cationic siRNA lipoplexes were designed using a 

non-commercialized cationic lipid that has demonstrated promising transfection efficiency in 

different cell lines (Arpicco et al., 2004; De Rosa et al., 2008), the [2-(2-

3didodecyloxypropyl)hydroxyethyl] am-monium bromide (DE). The effects of this modification on 

cell internalization were evaluated. Also, the ability of the lipoplexes to carry intact siRNA to the 

cytoplasm was assessed by testing gene expression inhibition on the A549-luc lung cancer cell line 

in vitro and for the first time in an in vivo lung cancer experimental model.  

 

2. Materials and methods  

2.1. Materials 

The cationic lipid [2-(2-3didodecyloxypropyl)hydroxyethyl] ammonium bromide (DE) was 

synthesized as described (Arpicco et al., 2004). L-alpha-dioleylphosphatidylethanolamine (DOPE) 

and phosphatidylethanolamine conjugated to rhodamine (PE-rhodamine) were purchased from 

Avanti Polar Lipids distributed by Sigma Aldrich (Saint Quentin Fallavier, France). High molecular 

weight hyaluronic acid (HA) (sodium salt, 1600 kDa, purity of 95%) was provided by Acros organics 

(Geel, Belgium). pGL3 luciferase (firefly) and control siRNA (19 bp) were purchased from Euro-

gentec (Angers, France). The HA-DOPE conjugate was synthesized as described previously (Surace 

et al., 2009).  

2.2. Liposomes and lipoplexes preparation and characterization 

Liposomes of DOPE/DE at 1:1 w/w ratio were prepared in water by the ethanol injection method 

(Batzri and Korn, 1973; Taetz et al., 2009). The preparation protocol is described in the 



supplementary information. The HA-DOPE content of liposomes is expressed as mass ratio of HA-

DOPE to other lipids (DE + DOPE) (10% refers to 1:10 w/w). Lipoplexes were prepared at charge 

ratios (+/ _ ratios) of 2 and 134 by adding one volume of the 3 mM liposome suspension into two 

volumes of siRNA solution at 11.05 or 0.16 mM, respectively, in an Eppendorf tube, and gently 

homogenizing by pipetting up and down. The ratios were calculated based on the fact that one positive 

charge is provided by 1 mol of DE and 38 negative charges are brought by 1 mol of siRNA. 

Suspensions of 15 mL  _2.5 mL of lipoplexes were usually prepared and incubated for 1 h at room 

temperature before use. Lipoplexes diameter, zeta potential and stability in the presence of serum 

were characterized as described in the supplementary information.  

2.3. Cell culture  

A549-luc-C8 Bioware Cell Line, a luciferase-expressing cell line derived from A549 

adenocarcinomic human alveolar epithelial cells, was purchased from Caliper Life Sciences 

(Hopkinton, USA). Cells were cultured using RPMI-1640 medium supplemented with 10% FBS, 50 

units/mL penicillin and 50 units/mL streptomycin. They were maintained at 37 °C in a humidified 

atmosphere with 5% CO2. To improve the homogeneity of luciferase expression and increase 

luminescence signals, a protocol for selection pressure was optimized. Before each experiment, cells 

were cultured for 12 days using the RPMI medium described previously with addition of 75 mg/ml 

Geneticin1G418 antibiotic (Gibco, Paisley, Scotland). CD44 expression on A549, A549-luc and 

G418-selected A549-luc cells was evaluated by flow cytometry (method described in the 

supplementary Information). Almost 100% of the cells expressed CD44 receptors on their surface, 

and the amount of receptors did not change after treatment with G418 (Table S1 and Fig. S1, 

Supplementary Information).  

2.4. Cell viability 

Cellular mitochondrial activity was evaluated after incubation with liposomes and lipoplexes using 

the 3-[4,5-dimethylthiazol-2- yl]-3,5-diphenyl tetrazolium bromide (MTT) test. Cells were seeded in 

96-well plates at a density of 70,000 cells/mL and allowed to adhere. After 24 h, cells were rinsed 

with PBS and fresh serum-free medium was added to the wells. Liposomes and lipoplexes were 

diluted in RPMI serum-free medium and added to the wells at various lipid concentrations (0.3–272 

mM). Six hours after incubation, serum was added to the wells at 10% v/v, and cells were incubated 

for 48 h. Then, 20 mL of a 5 mg/mL MTT solution was added to each well. After 2 h of incubation 

at 37° _C, the medium was discarded and 100 mL of DMSO was added to lyse the cells and solubilize 

the formazan crystals. The absorbance was measured with a micro-plate reader at 540 nm. Each 

liposome or lipoplex concentration was evaluated in triplicate, and the experiment was performed at 



least three times. Cell viability was expressed as the percentage of mitochondrial activity relative to 

the non-treated cells. 

2.5. Lipoplexes uptake 

Cells were seeded on 12-well plates at a density of 72,000 cells/ mL and allowed to adhere. After 24 

h, cells were rinsed with PBS, and fresh serum-free medium was added to the wells. Rhodamine-

labeled liposomes and lipoplexes at +/ _ ratios 2 and 134 were diluted in RPMI serum-free medium 

and added into the wells at a final lipid concentration of 10 mM (67 nM of siRNA for lipoplexes at 

+/ _ ratio 2 and 1 nM of siRNA for lipoplexes 134), and incubated at 37° _C. After 2, 5, 24 or 48 h, 

supernatants were discarded, and cells rinsed twice with PBS and harvested by 1  _ trypsine. This 

step was introduced to ensure that particles attached to the surface of cells, but not internalized, would 

not be taken into account in the flow cytometry measurements, possibly giving false-positive results. 

Cell suspensions were analyzed by flow cytometry, and mean fluorescence intensities (MFI) were 

collected on channel FL-2. Results were expressed as the ratio of the MFI of each sample to the MFI 

of non-treated cells. All measurements were performed in triplicate. In these experiments the term 

uptake was considered as the sum of particle membrane associated and internalized.  

2.6. Subcellular localization of lipoplexes  

The intracellular trafficking of lipoplexes +/ _ ratios 2 and 134 was investigated on A549 cells using 

confocal laser scanning microscopy. A549 cells were seeded at a density of 150,000 cells/ mL on 

coverslips and allowed to adhere at 37 °C, 5% CO2. After 24 h, cells were rinsed with PBS and fresh 

serum-free medium was added to the wells. Cells were then treated with rhodamine- labeled 

lipoplexes at a final lipid concentration of 10 mM. After 2 h, 6 h or 24 h of incubation, cells were 

rinsed with PBS and fixed by addition of 800 mL of 4% paraformaldehyde in PBS (w/v) during 20 

min. After washing with PBS, 10 mL of Vectashield1 mounting medium for fluorescence (Vector 

Laboratories, Inc., Burlingame, USA) was used to prepare the slides. Fluorescence experiments were 

performed with a confocal laser scanning microscope LSM 510-Meta (Zeiss, Germany) using a 63  _ 

/1.4 plan-Apochromat objective lens, a helium neon laser (excitation wavelength 543 nm) and a long 

pass emission filter LP 560 nm. The pinhole was set at 1.0 Airy unit (0.8 mm optical slice thickness). 

Twelve bit numerical images were acquired with LSM 510 software version 3.2. 

2.7. In vitro luciferase inhibition  

The ability of lipoplexes to inhibit luciferase gene expression on A549-luc cells was carried out. For 

that, cells were seeded on 96- well plates at a density of 30,000 cells/mL and allowed to adhere. After 

24 h, cells were rinsed with PBS, and fresh serum-free medium without red phenol was added to the 

wells. Lipoplexes were prepared with control and anti-luciferase siRNA at +/ _ ratios 134 and 2, with 

non-modified or HA-liposomes. Lipoplexes were diluted in serum-free medium and added into the 



wells at a final lipid concentration of 100 mM. Six hours after incubation, serum was added to the 

wells at 10% v/v and cells were incubated for 48 h. Fifty microliters of BriteLite (Perkin-Elmer Life 

Sciences, Courta-boeuf, France), containing both lysis buffer and luciferin substrate were then added 

to the wells. Plates were vortexed for 3 min and luciferase enzyme activity was quantified using the 

Envision Xcite luminometer (Perkin ElmerLife Sciences, Courtaboeuf, France) at ultrasensible mode, 

with measurement time of 0,1 s/well. Meas-urements were performed in 8 replicates for each sample 

of lipoplexes. Luciferase activity of untreated cells was measured simultaneously as a baseline for 

comparison. Controls of non-targeting siRNA lipoplexes were used to observe the effect of the 

formulations on luciferase activity.  

2.8. Distribution of lipoplexes in mouse lung  

Animal studies were carried out in strict accordance to the recommendations in the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health. To investigate the distribution of 

lipoplexes in mouse lungs, healthy CF-1 mice (female, 6–8 weeks) were treated with a single i.v. 

injection of rhodamine-labeled non-modified or HA-lipoplexes containing 20 mg of siRNA. Thirty 

minutes later, mice were euthanized using an excess of isoflurane. Lungs were dissected and flash-

frozen with liquid nitrogen in Tissue-Tek O.C.T. Compound. Transverse sections of 10 mm of 

thickness were obtained at various points along the length of the tissue using a Leica CM-3050-S 

cryostat. The sections were stained with ProLong1 Gold antifade reagent with DAPI (Molecular 

Probes, Eugene, OR) and images were captured with an inverted epifluorescence microscope (Zeiss 

Axio Observer).  

2.9. A549 intravenous experimental lung metastatic model  

Experiments were conducted according to the European rules (86/609/EEC and 2010/63/EU) and the 

principles of laboratory animal care and legislation in force in France (Decree No. 2013-118 of 

February 1, 2013). Five-week-old female athymic nude mice (Foxn1nu) were purchased from Harlan 

Laboratories (Gannat, France) and maintained in specific pathogen-free conditions throughout the 

experiment. Animals were kept in sterile cages (maximum of four mice/cage) bedded with sterilized 

soft wood granulate at a 12 h light/dark cycle, and supplied with chow and autoclaved water. All 

manipulations were performed under a laminar flow hood. A459-luc cells at 80% confluence were 

harvested, washed 3 times and suspended in PBS. Mice were injected in the tail vein with 1.5 million 

cells suspended in 200 mL of PBS, and tumor growth in the lungs was monitored weekly by 

bioluminescence imaging. Bioluminescence from luciferase expressing A549 cells (A549- luc) was 

measured using IVIS1 Lumina Series III LT (Perkin Elmer, USA). Firefly luciferin (Perkin Elmer, 

USA) was injected intraperi- toneally 6 min before imaging at a concentration of 100 mg/kg. Mice 

were then anesthetized using 4% isoflurane and placed on a warmed stage inside the light-tight 



camera box with continuous exposure to 2.5% isoflurane. Images were made from ventral and dorsal 

views from 6 to 15 min after luciferin injection. Data were analyzed based on total photon emission 

(photons/sec) in the region of interest over the thoracic space.  

2.10. In vivo luciferase inhibition  

The in vivo delivery of luciferase siRNA was tested in female athymic nude mice bearing the A549-

luc metastatic cancer. Bioluminescence measurements were made 24 h before treatment. Each group 

(8 animals) was then treated once a day for 3 days by i.v. injection of either NaCl 0.9%, luciferase-

siRNA solution, HA-lipoplexes prepared with nonspecific control siRNA, HA-lipoplexes prepared 

with luciferase siRNA or non-modified lipoplexes prepared with luciferase siRNA. Total siRNA 

amount injected was 60 mg/mouse. At 24 h post treatment, bioluminescence was quantified, mice 

were euthanized and lungs were removed for siRNA quantification by qPCR. Efficiency of gene 

expression inhibition in vivo was quantified in each mouse by the ratio between luminescence 

immediately before and 24 h after the last treatment. The lungs from 4 siRNA lipoplex-treated and 3 

vehicle-treated mice were frozen in situ with liquid nitrogen, and tissue was stored at  _80  _C until 

submitted to RNA extraction. The whole lung tissue from each animal was homogenized with 

ceramic beads in a Precellys 24 (Bertin, France) before extraction of total RNA using Trizol RNA 

isolation reagent (Life Technologies, France) according to the manufacturer’s instructions. RNA 

purity and quantity was assessed by UV measurement using a BioMate 3 S spectrophotom- eter 

(Thermo Scientific, France). RNA integrity was evaluated by capillary electrophoresis using RNA 

6000 Nano chips and the Bioanalyzer 2100 (Agilent Technologies, USA). For quantification of 

mRNA expression, strand cDNAs were first reverse-transcribed from 1 mg of total RNA, with 

random hexamers and oligo-dT priming using the iSCRIPT enzyme (Bio-Rad Laboratories, USA), 

according to the manufacturer's instructions. PCR primer pairs specific to the target and reference 

genes (Table 2, Supplementary Information) were designed using Primer3Plus software. cDNAs 

synthesized from 4 ng of total RNAs were amplified in a CFX96 real time thermal cycler (Bio-Rad) 

using the SSoADV Univer SYBR Green Supermix (Bio-Rad) reagent, with 500 nM final 

concentrations of each primer, in duplicates of 10 mL reactions, by 45 two-step cycles (95  _C 5 s; 

60  _C 30 s). ‘No RT’ _controls were amplified on all genes to verify genomic DNA contamination, 

and melting curve analysis was performed to assess the purity of the PCR products. PCR efficiencies, 

calculated for each gene from the slopes of calibration curves generated from the pool of all cDNA 

samples, were above 95%. GeNorm in qBase Plus tool (Vandesompele et al., 2002) was used to select 

r18S, HPRT, TBP and ACTB genes as references for normalization of mRNA expression results. The 

normalized relative expression of target genes in samples was determined using the DDCq method 

with correction for PCR efficiencies, where NRQ = ETarget  _DCqTarget/ERef  _DCqRef and DCq 



= Cqsample  _ Cqcalibrator (Hellemans et al., 2007). Final results were expressed as the n-fold 

differences in target gene expression in lipoplex-treated vs vehicle-treated mice.  

2.11. Statistical analysis  

Statistical analysis of data was performed by analysis of variance (ANOVA) followed by Bonferroni 

or Mann-Whitney’s (for qPCR) tests. Differences were considered to be statistically significant at a 

level of P < 0.05. 3.  

 

Results  

3.1. Lipoplexes preparation and stability  

The mean diameter, polydispersity index (PdI), zeta potential and amount of siRNA associated to the 

obtained non-modified and HA-modified liposomes and lipoplexes are reported in Table 1. Insertion 

of the HA-DOPE conjugate in lipoplex structure caused the increase in the mean diameter, from 76  

_ 7 nm to 93  _ 5 for lipoplexes at +/ _ ratio 134 and from 161  _15 nm to 233  _ 12 for lipoplexes at 

+/ _ ratio 2. The decrease in the surface charge upon addition of siRNA and formation of lipoplexes 

confirmed the association of the densely charged siRNA molecules. When non-modified and HA-

liposomes or lipoplexes were diluted in cell culture medium, a difference in their diameter was 

observed (Fig. S2). HA-liposomes and lipoplexes had a lesser tendency to aggregate in the presence 

of the serum present in the medium compared to their non-modified counterparts which display a 

significant increase in their diameter due to aggregation-mediated by serum proteins (Fig. S2).  

3.2. Cytotoxicity 

 As a first step for in vitro experiments, a comparative cytotoxicity test was performed on A549-luc 

cells using non-modified and HA-modified liposomes and lipoplexes at +/ _ ratios of 2 and 134. Cells 

were incubated for 48 h with liposomes/ lipoplexes formulations at concentrations ranging from 0.1 

to 300 mM lipids. The results show that the modification by HA and the presence of siRNA in the 

samples did not alter their toxicity profiles (Fig. 1). To ensure a cell viability above 80%, the lipid 

concentration was maintained at 10 mM for further in vitro experiments.  

3.3. Lipoplexes uptake and intracellular distribution  

The uptake of liposomes/lipoplexes by A549-luc cells was investigated using fluorescently labeled, 

non-modified and HA-modified liposomes and lipoplexes at at +/ _ ratios of 134 and 2. The uptake 

was quantified by flow cytometry after the cell-associated fluorescence was eliminated by rinsing 

cells twice with PBS and harvesting by trypsine (Fig. 2). A progressively increasing uptake from 2 

to 48 h was observed for liposomes and lipoplexes (ratio +/ _ 134). At all analyzed times, uptake of 

liposomes containing the HA-DOPE conjugate was higher compared to the non-modified particles. 

The same trend was observed for lipoplexes at a ratio of +/ _ 134. HA-lipoplexes at a +/ _ ratio of 2 



were internalized more rapidly compared to all other analyzed particles. At 2 h, a plateau of the uptake 

of these lipoplexes was already observed, and high cellular fluorescence intensity was observed until 

48 h with however no differences between modified and non-modified particles. The intracellular 

distribution of lipoplexes in A549-luc cells was assessed by confocal laser microscopy using non-

modified and HA-rhodamine-labeled lipoplexes at +/ _ ratios 2 Table 1 Mean diameter, polydispersity 

index (PdI), zeta potential and % of siRNA associated of non-modified and HA-liposomes and 

lipoplexes prepared at ratios +/ _ 134 and 2 (n = 3). Composition Diameter (nm) PdI Zeta Potential 

(mV) % siRNA associated DE:DOPE 90  _ 12 0.243  _ 0.06 57  _ 2 – _DE:DOPE:DOPE-HA 108  _ 

3 0.216  _ 0.04 35  _ 0.8 – _DE:DOPE:siRNA (134) 76  _ 7 0.268  _ 0.04 46  _ 1.3 99.2  _ 0.7 

DE:DOPE:DOPE-HA:siRNA (134) 93  _ 5 0.307  _ 0.02 30  _ 1.7 99.0  _ 0.4 DE:DOPE:siRNA (2) 

161  _ 15 0.171  _ 0.06 28  _ 1.9 93.0 _ 0.6 DE:DOPE:DOPE-HA:siRNA (2) 233  _ 12 0.151  _ 0.03  

_42  _ 3 96.0  _ 2.6 Fig. 1. A549-luc mitochondrial activity as a function of lipid concentration, 

determined by MTT test after incubation with liposomes and lipoplexes. Cells were incubated for 48 

h with non-modified and HA-liposomes and lipoplexes at +/ _ ratios 2 and 134, at concentrations 

from 0.1 to 300 mM lipids/well (n = 3). 106 with fluorescently-labeled siRNA. The diffuse 

fluorescence ob-served in ortho-images confirmed lipoplex (lipids and siRNA) localization in the cell 

cytoplasm, rather than merely bound to the cell membrane. Images from 2, 6 and 24 h after incubation 

(Fig. S3) show a progressive internalization of lipoplexes, as observed by the augmentation of global 

lipid fluorescence from 2 to 6 h, after which the fluorescence plateaued.  

3.4. In vitro luciferase gene expression inhibition  

The ability of lipoplexes to carry siRNA into the cell cytoplasm was then evaluated by measuring the 

inhibition of luciferase activity in A549-luc cells. Differences between non-modified and HA-DOPE 

lipoplexes were studied with lipoplexes at +/ _ ratios 134 and 2 prepared using luciferase-specific 

siRNA and non-specific control siRNA. The results in Fig. 3 show that specific inhibition by 

luciferase siRNA was observed compared to control (scramble) siRNA. For a +/ _ ratio 134, ca. 63% 

luciferase inhibition was observed after incubation with lipoplexes modified by the HA-DOPE 

conjugate, compared to ca. 23% for the non-modified lipoplexes. The highest luciferase inhibitions 

were obtained with lipoplexes at +/ _ ratio 2, with ca. 70% for the non-modified and ca. 81% for the 

HA-modified lipoplexes. For this reason and for the possibility to administer higher doses, lipoplexes 

at +/ _ ratio 2, HA-modified or not, were used in further in vivo experiments.  

3.5. Lung distribution of lipoplexes 

To visualize the influence of HA surface modification of lipoplexes on their lung distribution 

following intravenous administration to mice, fluorescently labeled lipoplexes were prepared at +/ _ 

ratio 2, HA-modified or not. After i.v. injection to CF mice, particle distribution was observed using 



fluorescence microscopy. Fig. 4 shows representative images of the lipoplexes distribution in the 

lungs. A large difference in tissue distribution was observed between these two types of particles 30 

min following administration. The fluorescence related to HA-lip-oplexes was homogenously 

distributed throughout the lungs. Meanwhile, weak fluorescence spots were observed for the non-

modified lipoplexes, evidencing the sparse distribution and the formation of aggregates.  

3.6. Tumor growth and in vivo luciferase inhibition  

To test the ability of HA-lipoplexes to silence gene expression in vivo, we developed a metastatic 

tumor model using the luciferase- expressing A549-luc cells. 1.5 million cells suspended in 200 mL 

of PBS were injected in the tail vein of athymic nude mice, and tumor growth was monitored weekly 

by bioluminescence imaging. A steady progression of lung tumor growth was measured over the 

period of 40 days, which correlated to the finding of tumor nodules on the macroscopic analysis of 

lungs. No changes in the body weight of mice were observed throughout the study. Fig. S4 shows 

tumor growth measured by BLI imaging, typical time-dependent ventral images of a mouse with 

average bioluminescence demonstrating lung colonization over time, and a representative image of 

lungs dissected 40 days after cell injection. The tumor targeting potential and the ability of lipoplex 

formulations at +/ _ ratio 2 to knockdown luciferase mRNA were then investigated on the developed 

metastatic model of human lung A549 non-small cell lung carcinoma. Mice were randomized in 5 

groups and treated once a day for 3 days by intravenous injections of either NaCl 0.9%, luciferase-

siRNA solution, HA-lipoplexes prepared with nonspecific control siRNA, HA-lipoplexes prepared 

with luciferase siRNA or non-modified lipoplexes prepared with luciferase siRNA. Tumor growth, 

calculated as the bioluminescence on the thoracic region after treatment relative to the 

bioluminescence before treatment, is shown in Fig. 5. Treatment with HA-lipoplexes carrying luc 

siRNA led to a statistically significant decrease of luciferase expression in Fig. 2. Uptake kinetics of 

rhodamine-labeled non-modified (blue) and HA-modified (red) liposomes and lipoplexes by A549-

luc cells, quantified by flow cytometry as the mean fluorescence intensity (MFI). Cells were 

incubated for 48 h with particles at a lipid concentration of 10 mM (n = 3). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.). 

Fig. 3. Luciferase expression inhibition in A549-luc cells by siRNA lipoplexes at +/ _ ratios 134 and 

2 prepared with non-modified or HA-liposomes. Cells were incubated with lipoplexes for 48 h before 

luminescence measurements (n = 8) comparison with controls and non-modified lipoplexes. While 

tumor luminescence increased to 102  _ 13% after treatment with vehicle and to 133  _ 27% after 

treatment with non-modified lipoplexes, it decreased to 83  _ 27% after treatment with HA-lipoplexes. 

3.7. Quantification of luciferase mRNA expression by RT-qPCR  



The objective of the real-time PCR assays was to determine if the observed decrease in tumor 

luminescence could be identified as the inhibition of luciferase mRNA expression in the lung tissues. 

The transcriptional expression analysis showed a 54% reduction of the expression of PGL3-luc 

transcript in the lung of animals treated with HA-lipoplexes compared to animals treated with NaCl 

0.9% (Fig. 6). Combined with the results from the luminescence measurements, it confirms the 

inhibitory activity of siRNA lipoplexes upon the expression of PGL3-luc in our model.  

 

4. Discussion  

The aim of this study was to characterize in vitro and in vivo the potential of HA-modified lipoplexes 

for the targeted delivery of siRNA to CD44-expressing A549 lung cancer cells. As we have 

previously observed that this amount was optimal for the transfection of MDA-MB231 and A549 

cancer cells expressing CD44 (Dufay Wojcicki et al., 2012; Surace et al., 2009), 10% (wHA/ wtotal 

lipids) of HA-DOPE conjugate (Surace et al., 2009) was used to prepare HA-modified lipoplexes, 

namely HA-lipoplexes, in which the DOPE lipid served as an anchor for the insertion of HA on lipid 

bilayer. Lipoplexes at +/ _ ratio 2 were used for the experiments, and lipoplexes at +/ _ ratio 134 were 

introduced in some cases as a control of positively charged lipoplexes. Indeed in a Fig. 4. 

Representative image of the lipoplexes distribution in the lungs of mice. Pictures were taken with a 

10 x magnification. From left to right, first frame: image taken using the filter for DAPI staining 

(cells), second frame: image taken using the filter for rhodamine staining (lipoplexes), third frame: 

merge, showing lungs cells in blue and lipoplexes in red. Non-modified lipoplexes +/ _ ratio 2 and 

HA-lipoplexes +/ _ ratio 2 were administered by intravenous injection. Animals were euthanized and 

lungs were dissected and flash-frozen 30 min after treatment. Scale bars = 100 mm. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) Fig. 5. Luciferase expression inhibition in nude athymic mice, calculated as the 

bioluminescence on the thoracic region after treatment compared to the biolumines- cence before 

treatment with lipoplexes at +/ _ ratio 2. Mice were inoculated intravenously with1.5millionA549-

luccells. After 4weeks, animals were treated once a day for 3 days by intravenous injections of NaCl 

0.9%, luciferase-siRNA solution, HA-lipoplexes prepared with nonspecific control siRNA, HA-

lipoplexes prepared with luciferase siRNA or non-modified lipoplexes prepared with luciferase 

siRNA. Data represent the mean _ SD (n  _ 6). *, P < 0.05 versus vehicle. 108 T. Leite Nascimento 

et al. / International Journal of Pharmaceutics 514 (2016) 103–111recent publication, we have shown 

that for this specific ratios, the charge was different as well as the morphology of the particles 

(Nascimento et al., 2015). Moreover in lipoplexes at +/ _ ratio 2 only 36% of the HA was associated 

to particles compared to 79% for lipoplexes at +/ _ ratio 134 (Nascimento et al., 2015) and we assume 



this could affect cellular interactions. Lipoplexes showed increased diameter after insertion of the 

DOPE-HA conjugate and the addition of siRNA, reaching 230 nm for the HA-lipoplexes at +/ _ ratio 

2, that presented the highest amounts of associated siRNA. This effect was already described for HA-

modified liposomes (Arpicco et al., 2013a; Gan et al., 2013; Tiantian et al., 2014), since HA is a 

hydrophilic polymer and its placement on membrane surface increases particle hydrodynamic 

diameter. The multilamellar characteristic of the lipoplexes revealed by cryomicroscopy in a previous 

study (Nascimento et al., 2015), permitted a siRNA entrapment efficacy of 96.0  _ 2.6% that were 

located between bilayers as shown in this earlier report (Nascimento et al., 2015). HA lipoplexes were 

more stable than their counterparts with no HA due to a stabilization mechanism being the repulsion 

between negative charges of HA and serum proteins, minimizing their nonspecific interactions and 

causing particle stabilization. The biological activity of HA-lipoplexes was evaluated using the A549-

luc human lung carcinoma cell line, which proved to be a suitable model for CD44 targeting since 

the totality of the cell population exhibited the CD44 membrane receptor. Measurement of cellular 

mitochondrial activity of cells exposed to liposomes/ lipoplexes showed that the modification by HA 

did not change lipoplex toxicity. This biocompatibility is consistent with the ubiquitous and nontoxic 

characteristics of HA (Arpicco et al., 2013a), and is in agreement with previous studies in which the 

modification of neutral (Glucksam-Galnoy et al., 2012; Peer and Margalit, 2004a), negatively 

(Arpicco et al., 2013b; Mizrahy et al., 2011) or positively charged (Surace et al., 2009) liposomes 

with HA revealed no apparent effect on cellular proliferation of CD44- overexpressing cells. The 

cytotoxicity of cationic lipids and polymers has been investigated in several studies, especially due 

to the increasing interest in these compounds for their ability of forming lipoplexes upon incubation 

with negatively charged nucleic acids (Lv et al., 2006; Morille et al., 2008; Zhang et al., 2004). When 

present on nanoparticles, these cationic compounds, upon binding to the cell surface, can be 

recognized as a signal of danger for cells (inducing pro-apoptotic or pro-inflammatory reactions) or 

contribute to activate cascades that are classically activated by endogenous cationic compounds 

(Lonez et al., 2012). This toxicity depends though on several factors besides the particle surface 

charge, such as the lipid type, amount and charge (Park et al., 2014), and its ratio in combination with 

helper lipids (Morille et al., 2008). Our results suggest that the cytotoxicity profile of HA-lipoplexes 

is not related to the changes in particle surface charge, since cells responded similarly when incubated 

with all formu-lations, and that cytotoxicity was observed only after incubation with high 

concentration of particles. Quantification of lipid-related fluorescence by flow cytometry showed 

higher internalization in A549 CD44-overexpressing cells of samples that contained the conjugate, 

confirming the crucial role of the receptor in the endocytosis process, as shown previously by our 

group and others (Dalla Pozza et al., 2013; Dufay Wojcicki et al., 2012; Ganesh et al., 2013; Mizrahy 



et al., 2011; Qhattal and Liu, 2011; Taetz et al., 2009). Despite that the higher fluorescence Fig. 6. 

Relative expression of PGL3-LUC mRNA transcript in nude athymic mice, calculated using r18S, 

HPRT, TBP and ACTB genes as references for normalization of mRNA expression. Results are 

expressed as the n-fold differences in target gene expression in HA-lipoplex-treated vs NaCl 0.9%-

treated mice. Data represent the mean  _ SD (n = 3;4). T. Leite Nascimento et al. / International 

Journal of Pharmaceutics 514 (2016) 103–111 109associated to the uptake of the plain lipoplexes +/ 

_ ratio 2 at 48 h masked the effect of HA presence on the internalization of these lipoplexes, cell 

fluorescence intensity was clearly higher for HA-lipoplexes in all other time points. These data 

correlated with the ability of anti-Luc siRNA lipoplexes in promoting more than 80% luciferase 

inhibition with HA-lipoplexes at +/ _ ratio 2 (10% more than non-modified lipoplexes at the same 

ratios) and 65% with HA-DOPE lipoplexes at +/ _ ratio 134. This corresponds to 67 nM and 1 nM 

siRNA/well, respectively and demonstrates the high siRNA delivery efficiency of the lipoplexes. This 

is in agreement with the lipoplexes uptake studies showing that the overall amount of lipoplexes being 

taken up by cells at +/ _ 2 was similar. The preferential uptake and thus gene expression inhibition 

effect of the HA-lipoplexes +/ _ ratio 2 is masked by the continuous internalization of the non-

modified lipoplexes +/ _ ratio 2. Despite these similarities, these latest formulation was further chosen 

for in vivo experiments since the HA-DOPE lipoplexes at +/ _ ratio 134 carried insufficient amount 

of siRNA to obtain an inhibition effect in the animal model (data not shown). The modification of 

nanoparticles with HA has been explored mainly for its ability to specifically bind to various cells 

that overexpress CD44, a common marker for tumor initiating cells-cancer stem cells (CSC) in human 

carcinomas. Since a variety of cells, including breast, ovarian, colon, stomach, and lung carcino-mas 

(Day and Prestwich, 2002) overexpress these receptors, the formulation of HA-modified particles is 

a promising strategy to promote receptor-mediated cellular entry. This strategy has been proved 

largely efficient in vitro (Arpicco et al., 2013b). When in vivo activity is tested, though, results are 

less outstanding. Most of the currently developed nanosystems, including the actively targeted ones, 

exhibit a discrepancy between targetability in vitro and in vivo (Jiang et al., 2012). Long blood 

circulation is critical for active tumor targeting, and to reach the targeted cells after intravenous 

injection, nanoparticles first have to resist clearance from the circulation by the monocyte phagocytic 

system. This is not the case for all HA-modified nanoparticles. Even though HA has been successfully 

used as a hydrophilic coating and even proposed as an alternative to PEG to increase blood circulation 

of nanoparticles (Jiang et al., 2012; Mizrahy et al., 2011; Peer and Margalit, 2004a; b). Qhattal et al. 

(Qhattal et al., 2014) exemplified that depending on the polymer length of HA and on their negative 

surface charge, HA-liposomes may even suffer a faster clearance. Therefore, a case-by-case analysis 

of the in vivo fate of HA-particles is necessary. Tissue analysis after administration of rhodamine-



labeled HA-lipoplexes in healthy CF-1 mice revealed diffuse fluorescence corresponding to the HA-

lipoplexes in the mouse lung, which was not the case with non-modified lipoplexes which formed 

aggregates. These data correlates well with the low stability of plain lipoplexes compared to the ones 

covered by HA. To test the hypothesis that HA-lipoplexes can transport siRNA into the cytoplasm of 

CD44-overexpressing cells in vivo, we developed a model of human lung A549 non-small cell lung 

carcinoma. The bioluminescence images and appearance of lung nodules con-firmed lung metastasis. 

Lipoplexes were then administered by bolus intravenous injection, at a volume of 0.1 mL per 10 g of 

body weight, which is normally acceptable in human therapy. Results confirmed the advantage of 

HA-lipoplexes over non-modified lipoplexes on the inhibition of luciferase expression by decrease 

in luminescence and PGL3-LUC transcript in the tumors. Taken together, these results indicate that 

our HA-lipoplexes are able to carry the siRNA molecules to the cytoplasm of CD44-overexpress- ing 

cells. These HA-modified carriers beneficiate of the EPR effect, as consequence of the increase in 

hydrophilicity and longer circulation time caused by the presence of HA on the surface of the 

particles, and of the CD44-targeting promoted by HA moieties (Park et al., 2014). The results 

presented here show the potentialities of HA-lipoplexes as siRNA carriers to CD44-overexpressing 

cells. Lipoplexes are stable in the presence of serum, and their structural modification with the HA-

DOPE conjugate improves cellular internalization mediated by the CD44 receptor. After uptake, 

lipoplexes are distributed in the cytoplasm, where the carried siRNA promotes highly efficient gene 

expression inhibition. The HA-lipoplexes are able to transport in vivo a dose of intact siRNA for 

uptake and ultimately intracellular function, and are thus a promising tool for anticancer therapeutic 

gene expression inhibi-tion.  
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