407 research outputs found

    Electric field variability and classifications of Titan's magnetoplasma environment

    Full text link
    The atmosphere of Saturn's largest moon Titan is driven by photochemistry, charged particle precipitation from Saturn's upstream magnetosphere, and presumably by the diffusion of the magnetospheric field into the outer ionosphere, amongst other processes. Ion pickup, controlled by the upstream convection electric field, plays a role in the loss of this atmosphere. The interaction of Titan with Saturn's magnetosphere results in the formation of a flow-induced magnetosphere. The upstream magnetoplasma environment of Titan is a complex and highly variable system and significant quasi-periodic modulations of the plasma in this region of Saturn's magnetosphere have been reported. In this paper we quantitatively investigate the effect of these quasi-periodic modulations on the convection electric field at Titan. We show that the electric field can be significantly perturbed away from the nominal radial orientation inferred from Voyager 1 observations, and demonstrate that upstream categorisation schemes must be used with care when undertaking quantitative studies of Titan's magnetospheric interaction, particularly where assumptions regarding the orientation of the convection electric field are made.Comment: 13 pages, 3 figures, submitted to Annales Geophysicae (AnGeo Communicates), revised version responding to peer review comment

    The cushion region and dayside magnetodisc structure at Saturn

    Get PDF
    A sustained dipolar magnetic field between the current sheet outer edge and the magnetopause, known as a cushion region, has yet to be observed at Saturn. Whilst some signatures of reconnection occurring in the dayside magnetodisc have been identified, the presence of this large-scale structure has not been seen. Using the complete Cassini magnetometer data, the first evidence of a cushion region forming at Saturn is shown. Only five potential examples of a sustained cushion are found, revealing this phenomenon to be rare. This feature more commonly occurs at dusk compared to dawn, where it is found at Jupiter. It is suggested that due to greater heating and expansion of the field through the afternoon sector the disc is more unstable in this region. We show that magnetodisc breakdown is more likely to occur within the magnetosphere of Jupiter compared to Saturn

    Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.

    Get PDF
    SIGNIFICANCE: Indirect imaging problems in biomedical optics generally require repeated evaluation of forward models of radiative transport, for which Monte Carlo is accurate yet computationally costly. We develop an approach to reduce this bottleneck, which has significant implications for quantitative tomographic imaging in a variety of medical and industrial applications. AIM: Our aim is to enable computationally efficient image reconstruction in (hybrid) diffuse optical modalities using stochastic forward models. APPROACH: Using Monte Carlo, we compute a fully stochastic gradient of an objective function for a given imaging problem. Leveraging techniques from the machine learning community, we then adaptively control the accuracy of this gradient throughout the iterative inversion scheme to substantially reduce computational resources at each step. RESULTS: For example problems of quantitative photoacoustic tomography and ultrasound-modulated optical tomography, we demonstrate that solutions are attainable using a total computational expense that is comparable to (or less than) that which is required for a single high-accuracy forward run of the same Monte Carlo model. CONCLUSIONS: This approach demonstrates significant computational savings when approaching the full nonlinear inverse problem of optical property estimation using stochastic methods

    Combined Reconstruction and Registration of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT) has the potential to en- hance breast cancer detection by reducing the confounding e ect of su- perimposed tissue associated with conventional mammography. In addi- tion the increased volumetric information should enable temporal datasets to be more accurately compared, a task that radiologists routinely apply to conventional mammograms to detect the changes associated with ma- lignancy. In this paper we address the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their reg- istration. Using a simple test object, and DBT simulations from in vivo breast compressions imaged using MRI, we demonstrate that this com- bined reconstruction and registration approach produces improvements in both the reconstructed volumes and the estimated transformation pa- rameters when compared to performing the tasks sequentially

    Multiple Projection Optical Diffusion Tomography with Plane Wave Illumination

    Full text link
    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data can be much more easily fitted into the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

    A combined model of pressure variations in Titan's plasma environment

    Get PDF
    In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main sources are the dynamic pressure associated with Saturn's cold, subcorotating plasma and the hot plasma pressure under disturbed conditions. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of up to about three as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by ≲10°. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet. Our model may be used to predict near-Titan conditions from ‘far-field’ in situ measurements

    On Learned Operator Correction in Inverse Problems

    Get PDF
    We discuss the possibility of learning a data-driven explicit model correction for inverse problems and whether such a model correction can be used within a variational framework to obtain regularized reconstructions. This paper discusses the conceptual difficulty of learning such a forward model correction and proceeds to present a possible solution as a forward-adjoint correction that explicitly corrects in both data and solution spaces. We then derive conditions under which solutions to the variational problem with a learned correction converge to solutions obtained with the correct operator. The proposed approach is evaluated on an application to limited view photoacoustic tomography and compared to the established framework of the Bayesian approximation error method

    Inversion formulas for the broken-ray Radon transform

    Full text link
    We consider the inverse problem of the broken ray transform (sometimes also referred to as the V-line transform). Explicit image reconstruction formulas are derived and tested numerically. The obtained formulas are generalizations of the filtered backprojection formula of the conventional Radon transform. The advantages of the broken ray transform include the possibility to reconstruct the absorption and the scattering coefficients of the medium simultaneously and the possibility to utilize scattered radiation which, in the case of the conventional X-ray tomography, is typically discarded.Comment: To be submitted to Inverse Problem

    Expectation propagation for Poisson data

    Get PDF
    The Poisson distribution arises naturally when dealing with data involving counts, and it has found many applications in inverse problems and imaging. In this work, we develop an approximate Bayesian inference technique based on expectation propagation for approximating the posterior distribution formed from the Poisson likelihood function and a Laplace type prior distribution, e.g. the anisotropic total variation prior. The approach iteratively yields a Gaussian approximation, and at each iteration, it updates the Gaussian approximation to one factor of the posterior distribution by moment matching. We derive explicit update formulas in terms of one-dimensional integrals, and also discuss stable and efficient quadrature rules for evaluating these integrals. The method is showcased on two-dimensional PET images
    corecore