1,808 research outputs found

    Long range predictability of atmospheric flows

    Get PDF
    International audienceIn the light of recent advances in 2D turbulence, we investigate the long range predictability problem of atmospheric flows. Using 2D Euler equations, we show that the full nonlinearity acting on a large number of degrees of freedom can, paradoxically, improve the predictability of the large scale motion, giving a picture opposite to the one largely popularized by Lorenz: a small local perturbation of the atmosphere will progressively gain larger and larger scales by nonlinear interaction and will finally cause large scale change in the atmospheric flow

    Bounded-time fault-tolerant rule-based systems

    Get PDF
    Two systems concepts are introduced: bounded response-time and self-stabilization in the context of rule-based programs. These concepts are essential for the design of rule-based programs which must be highly fault tolerant and perform in a real time environment. The mechanical analysis of programs for these two properties is discussed. The techniques are used to analyze a NASA application

    Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations

    Full text link
    We determine an asymptotic expression of the blow-up time t_coll for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point. We show that t_coll=t_{*}(eta-eta_c)^{-1/2} with t_{*}=0.91767702..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta_c is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the asymptotic expression of the relaxation time close but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point

    Determination of the calcium channel distribution in the olfactory system

    Full text link
    In this paper we study a linear inverse problem with a biological interpretation, which is modeled by a Fredholm integral equation of the first kind. When the kernel in the Fredholm equation is represented by step func- tions, we obtain identifiability, stability and reconstruction results. Further- more, we provide a numerical reconstruction algorithm for the kernel, whose main feature is that a non-regular mesh has to be used to ensure the invert- ibility of the matrix representing the numerical discretization of the system. Finally, a second identifiability result for a polynomial approximation of degree less than nine of the kernel is also established

    Sensitivity to the KARMEN Timing Anomaly at MiniBooNE

    Get PDF
    We present sensitivities for the MiniBooNE experiment to a rare exotic pion decay producing a massive particle, Q^0. This type of decay represents one possible explanation for the timing anomaly reported by the KARMEN collaboration. MiniBooNE will be able to explore an area of the KARMEN signal that has not yet been investigated

    Improving the Rooting Ability of Stem Cuttings from Virginia Pine and Fraser Fir Christmas Trees by Stumping

    Get PDF
    Papers and abstracts from the 27th Southern Forest Tree Improvement Conference held at Oklahoma State University in Stillwater, Oklahoma on June 24-27, 2003

    A new look at the cosmic ray positron fraction

    Get PDF
    The positron fraction in cosmic rays was found to be a steadily increasing in function of energy, above ∌\sim 10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during the propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy. Alternatively, it could be produced by nearby astrophysical sources, such as pulsars. Both hypotheses are probed in this work in light of the latest AMS-02 positron fraction measurements. The transport of the primary and secondary positrons in the Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from astrophysical sources is based on the pulsar observations included in the ATNF catalogue. We find that the mass of the favoured dark matter candidates is always larger than 500 GeV. The only dark matter species that fulfils the numerous gamma ray and cosmic microwave background bounds is a particle annihilating into four leptons through a light scalar or vector mediator, with a mixture of tau (75%) and electron (25%) channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be explained by a single astrophysical source and a list of five pulsars from the ATNF catalogue is given. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant. In the WIMP annihilation cross section to mass plane for instance, they overshadow the error contours derived from the positron data.Comment: 20 pages, 16 figures, accepted for publication in A&A, corresponds to published versio

    The effects of nitrate on the oral microbiome:a systematic review investigating prebiotic potential

    Get PDF
    Nitrate (NO3−) has been suggested as a prebiotic for oral health. Evidence indicates dietary nitrate and nitrate supplements can increase the proportion of bacterial genera associated with positive oral health whilst reducing bacteria implicated in oral disease(s). In contrast, chlorhexidine-containing mouthwashes, which are commonly used to treat oral infections, promote dysbiosis of the natural microflora and may induce antimicrobial resistance

    Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    Full text link
    We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.Comment: Contributed to the 20th International Spin Physics Symposium, SPIN2012, 17-22 September 2012, Dubna, Russia, 4 pages, LaTe
    • 

    corecore