9,787 research outputs found

    Dynamic behavior of porous electrode systems final report

    Get PDF
    Mathematical model of flooded porous electrodes under dynamic and static conditions - Methods for measuring porous electrode reaction distributio

    The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

    Full text link
    Ultra compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins. We perform high-resolution N-body / smoothed particle hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funneled down inner galactic bars, since this process enhances the central dark matter content. Even when the entire disk is tidally stripped away, the nucleus stays intact and can remain dark matter dominated even after severe stripping. Total galaxy disruption beyond the nuclei only occurs on certain orbits and depends on the amount of dissipation during nuclei formation. By comparing the total disruption of CDM subhaloes in a cluster potential we demonstrate that this model also leads to the observed spatial distribution of UCDs which can be tested in more detail with larger data sets.Comment: 8 pages, 8 figures, final version accepted for publication in MNRA

    Tuning the mobility of a driven Bose-Einstein condensate via diabatic Floquet bands

    Full text link
    We study the response of ultracold atoms to a weak force in the presence of a temporally strongly modulated optical lattice potential. It is experimentally demonstrated that the strong ac-driving allows for a tailoring of the mobility of a dilute atomic Bose-Einstein condensate with the atoms moving ballistically either along or against the direction of the applied force. Our results are in agreement with a theoretical analysis of the Floquet spectrum of a model system, thus revealing the existence of diabatic Floquet bands in the atom's band spectra and highlighting their role in the non-equilibrium transport of the atoms

    Lower bounds for nodal sets of eigenfunctions

    Get PDF
    We prove lower bounds for the Hausdorff measure of nodal sets of eigenfunctions.Comment: To appear in Communications in Mathematical Physics; revised to include two additional references and update bibliographic informatio

    Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: Application to global CO_2 fluxes since 750 Ma

    Get PDF
    Magma transfer from the mantle to the crust in arcs is an important step in the global cycling of elements and volatiles from Earth's interior to the atmosphere. Arc intrusive rocks dominate the total magma mass budget over extrusive rocks. However, their total volume and rate of addition is still poorly constrained, especially in continental arcs. We present lateral (forearc to backarc) and depth‐dependent (volcanics to deep crust) magma volume additions and arc‐wide magma addition rates (MARs) calculated from three continental arc crustal sections preserving magma flare‐up periods. We observe an increase in volume addition with depth and less magma added in the forearc (~15%) and backarc (~10% to 30%) compared to the main arc. Crustal‐wide MARs for each section are remarkably similar and around 0.7–0.9 km^3/km^2/Ma. MARs can be used to estimate CO_2 fluxes from continental arcs. With initial magma CO_2 contents of 1.5 wt.%, global continental arc lengths, and MARs, we calculate changes in C (Mt/year) released from continental arcs since 750 Ma. Calculated present‐day global C fluxes are similar to values constrained by other methods. Throughout the Phanerozoic, assuming equal durations of flare‐up and lull magmatism, calculated continental CO_2 flux rates vary between 4 and 18 Mt C/year with highest values in the Mesozoic. These fluxes are considered minima since the intake of mantle and/or crustal carbon is not considered. Magmatic episodicity in continental arcs and changes in arc thickness and width are critical to consider when calculating MARs through time
    corecore