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LOWER BOUNDS FOR NODAL SETS OF EIGENFUNCTIONS

TOBIAS H. COLDING AND WILLIAM P. MINICOZZI II

0. Introduction

Let M be a smooth closed Riemannian manifold and ∆ the Laplace operator. A function
u is said to be an eigenfunction with eigenvalue λ if

∆u = −λ u . (0.1)

With our convention on the sign of ∆, the eigenvalues are non-negative and go to infinity.
One of the most fundamental questions about eigenfunctions is to understand the sets

where they vanish; these sets are called nodal sets . Nodal sets are (n − 1)-dimensional
manifolds away from (n − 2)-dimensional singular sets where the gradient also vanishes, so
it is natural to estimate the (n− 1)-dimensional Hausdorff measure Hn−1.

The main result of this short note is the following lower bound:

Theorem 1. Given a closed n-dimensional Riemannian manifold M , there exists C so that

Hn−1({u = 0}) ≥ C λ
3−n
4 . (0.2)

In particular, Theorem 1 gives a uniform lower bound in dimension n = 3.

In [Y], S.-T. Yau conjectured the lower bound C
√
λ in all dimensions. This was proven for

surfaces by Brüning, [B], and Yau, independently, and for real analytic metrics by Donnelly
and Fefferman in [DF], but remains open in the smooth case. The Donnelly-Fefferman
argument leads to exponentially decaying lower bounds in the smooth case; see also [HL].

In [M], Mangoubi considered eigenfunctions on a ball in a manifold and proved lower
bounds for the volume of the subset of the ball where the function is positive and the subset
where it is negative. Combined with the isoperimetric inequality, one can get the lower
bound C λ

3−n
2

− 1
2n for the measure of the nodal set on the entire manifold.

Recently, Sogge and Zelditch, [SZ], proved the lower bound C λ
7−3n

8 . Their argument is
completely different and is based in part on a beautiful new integral formula relating the L1

norm of |∇u| on the nodal set and the L1 norm of u on M .

Finally, note that some papers use λ2 for the eigenvalue (i.e., ∆u = −λ2 u); with that

convention, our bound is C λ
3−n
2 .
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1. Finding good balls

Throughout M will be a fixed closed manifold with Laplace operator ∆ and u will be an
eigenfunction with eigenvalue λ and

∫

M
u2 = 1. We will always assume that λ ≥ 1 since our

interest is in what happens when λ goes to infinity.

The first step is to fix a scale r depending on λ:

Lemma 1. There exists a > 0 so that u has a zero in every ball of radius a
3
√
λ
.

This lemma is standard, but we will include a proof since it is so short.

Proof. If u does not vanish on B r
3
, then Barta’s theorem implies that the lowest Dirichlet

eigenvalue on this ball is at least λ. Let φ be a function that is identically one on B r
6
and

that cuts off linearly to zero on the annulus B r
3
\B r

6
. It follows that

λ ≤
∫

|∇φ|2
∫

φ2
≤

36r−2Vol(B r
3
)

Vol(B r
6
)

≤ C

r2
, (1.1)

where C comes from the Bishop-Gromov volume comparison (see page 275 of [G]) and
depends only on n, the Ricci curvature of M , and an upper bound for r. Since this is
impossible for r2 > C λ−1, the lemma follows. �

From now on, we set r = a λ− 1
2 with a given by Lemma 1.

Next we use a standard covering argument to decompose the manifold M into small balls
of radius r. If B is a ball in M , then we write 2B for the ball with the same center as B and
twice the radius.

Lemma 2. There exists a collection {Bi} of balls of radius r in M so that M ⊂ ∪iBi and
each point of M is contained in at most CM = CM(M) of the double balls 2Bi’s.

Proof. Choose a maximal disjoint collection of balls B r
2
(pi). It follows immediately from

maximality that the double balls Bi = Br(pi) cover M .
Suppose that p ∈ M is contained in balls B2r(p1), . . . , B2r(pk). In particular, the disjoint

balls B r
2
(p1), . . . , B r

2
(pk) are all contained in B3r(p) so that

k
∑

i=1

Vol(B r
2
(pi)) ≤ Vol(B3r(p)) . (1.2)

On the other hand, for each i, the Bishop-Gromov volume comparison gives CM that depends
only on n, an upper bound on r, and a bound on the Ricci curvature of M so that

Vol(B3r(p)) ≤ Vol(B5r(pi)) ≤ CM Vol(B r
2
(pi)) . (1.3)

Combining (1.2) and (1.3) gives that k ≤ CM . Since p is arbitrary, the lemma follows. �

From now on, we will use the balls Bi given by Lemma 2. These balls will be sorted into
two groups, depending on how fast u is growing from Bi to 2Bi. The two groups will be the
ones that are d-good and the ones that are not. Namely, given a constant d > 1, we will say
that a ball Bi is d-good if

∫

2Bi

u2 ≤ 2d
∫

Bi

u2 . (1.4)
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Let Gd be the union of the d-good balls

Gd = ∪{Bi |Bi is d-good } . (1.5)

The next lemma shows that most of the L2 norm of u comes from d-good balls, provided
that d is chosen fixed large independently of λ.

Lemma 3. There exists dM depending only on CM so that if d ≥ dM , then
∫

Gd

u2 ≥ 3

4
. (1.6)

Proof. Let Ω = ∪{Bi |Bi is not d-good } be the union of the balls Bi that are not d-good.
Since the Bi’s cover M , we have

∫

Gd

u2 ≥
∫

M

u2 −
∫

Ω

u2 = 1−
∫

Ω

u2 . (1.7)

If the ball Bi is not d-good, then
∫

2Bi

u2 > 2d
∫

Bi

u2 . (1.8)

Summing (1.8) over the balls that are not d-good gives
∫

Ω

u2 ≤
∑

Bi is not d-good

∫

Bi

u2 ≤
∑

i

2−d

∫

2Bi

u2 ≤ 2−dCM

∫

M

u2 = 2−dCM , (1.9)

where the second inequality used (1.8) and the third inequality used Lemma 2. If we choose
dM so that 2−dM CM = 1

4
, then (1.6) follows by combining (1.7) and (1.9). �

To get a lower bound for the number of good balls, we will use the following Lp bounds
for eigenfunctions proven by Sogge in [S1]:

‖u‖Lp ≤
{

C λ
n(p−2)−p

4p if p ≥ 2(n+1)
n−1

,

C λ
(n−1)(p−2)

8p if p ≤ 2(n+1)
n−1

.
(1.10)

We will only use this estimate for p = 2(n+1)
n−1

as this gives the sharpest bound; see the remark
right after the proof.

Lemma 4. There exists C depending only on M so that there are at least C λ
n+1
4 balls that

are dM -good.

Proof. Let N denote the number of dM -good balls Bi. Given any p > 2, the L2 norm of u
on a set G is bounded by

∫

G

u2 ≤
(
∫

G

1

)
p−2
p
(
∫

G

(u2)
p
2

)
2
p

≤ (Vol(G))
p−2
p ‖u‖2Lp . (1.11)

Raising both sides to the p
p−2

power, bringing the Lp norm to the other side, and setting
G = GdM gives

(

3

4

)
p

p−2

‖u‖−
2p
p−2

Lp ≤
(

∫

GdM

u2

)
p

p−2

‖u‖−
2p
p−2

Lp ≤ Vol(GdM ) , (1.12)
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where the first inequality used Lemma 3. Thus, for any p ≤ 2(n+1)
n−1

, the Lp eigenfunction
bound (1.10) gives

Cp λ
1−n
4 = Cp

(

λ
(n−1)(p−2)

8p

)− 2p
p−2 ≤ Vol(GdM ) , (1.13)

where the constant Cp depends on p and M but not on λ.
Since Vol(Bi) ≤ C ′

M rn = C ′ λ−n
2 for C ′

M and C ′ depending on M (in fact, just on n, a
lower bound for the Ricci curvature, and an upper bound on r), we get that

C λ
1−n
4 ≤ Vol(Gd) ≤ N C ′ λ−n

2 , (1.14)

giving the lemma. �

Remark 1. Setting p = 2(n+1)
n−1

gives the sharpest bound in Lemma 4. To see this, suppose

that p ≥ 2(n+1)
n−1

and use the Lp eigenfunction bound (1.10) in (1.12) to get

Cp λ
p

2(p−2)
−n

2 = Cp

(

λ
n(p−2)−p

4p

)− 2p
p−2 ≤ Vol(GdM ) , (1.15)

where the constant Cp depends on p andM but not on λ. Since p
2(p−2)

is monotone decreasing

in p, the bound (1.15) is sharpest at the endpoint p = 2(n+1)
n−1

.

Remark 2. The lower bound (1.13) for the volume where
∫

u2 concentrates is sharp. There

are spherical harmonics concentrating on a λ− 1
4 neighborhood of a geodesic; see [S2].

Remark 3. If we used above the Sobolev inequality (page 89 in [ScY]) instead of the Lp-
bounds of Sogge, then we would get the following lower bound for the volume of G where
p = 2n

n−2

∫

G

u2 ≤
(
∫

G

1

)
p−2
p
(
∫

G

(u2)
p
2

)
2
p

≤ (Vol(G))
p−2
p ‖u‖2Lp

≤ (Vol(G))
p−2
p ‖∇u‖2L2 = (Vol(G))

p−2
p λ . (1.16)

Note that the Sobolev inequality holds since u is an eigenfunction so
∫

M
u = 0. Since

p−2
p

= 1− 2
p
= 2

n
, we get

∫

G

u2 ≤ (Vol(G))
2
n λ , (1.17)

which gives only that the number of good balls is bounded below (independent of λ). This

leads to the lower bound C λ
1−n
2 for the measure of the nodal set.

2. Local estimates for the nodal set

The main theorem will follow by combining the lower bound on the number of good balls
with a lower bound for the nodal volume in each good ball. This local estimate for the nodal
set is based on the isoperimetric inequality together with estimates for the sets where the
function is positive and negative; this approach comes from [DF] where they prove a similar
local estimate (cf. also [HL]).

The local lower bound for nodal volume is the following:
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Proposition 1. Given constants d > 1 and ρ > 1, there exist µ > 0 and λ̄ so that if
∆u = −λ u on Br(p) ⊂ M with r ≤ ρ λ− 1

2 , λ ≥ λ̄, u vanishes somewhere in B r
3
(p), and

∫

B2r(p)

u2 ≤ 2d
∫

Br(p)

u2 , (2.1)

then

Hn−1 (Br(p) ∩ {u = 0}) ≥ µ rn−1 . (2.2)

Given this proposition, we can now prove the main theorem:

Proof. (of Theorem 1). We can assume that λ is large. By Lemma 4, there are at least

C λ
n+1
4 balls that are dM -good.

If Bi is any of the balls in the covering, then Lemma 1 implies that u vanishes somewhere
in 1

3
Bi. Thus, if Bi is dM -good, then Proposition 1 (with d = dM and r = a λ− 1

2 ) gives

Hn−1 (Bi ∩ {u = 0}) ≥ C1 λ
−n−1

2 , (2.3)

where C1 depends only on M . Here, we have used that we can assume that λ is large.
Combining these two facts and using the covering bound from Lemma 2 gives

C λ
n+1
4 C1 λ

−n−1
2 ≤

∑

Bi dM -good

Hn−1 (Bi ∩ {u = 0}) ≤ CmHn−1 ({u = 0}) , (2.4)

and the theorem follows. �

It only remains to prove the local estimate in Proposition 1.

2.1. Proof of the local lower bound. In Euclidean space, if an eigenfunction u vanishes
at a point p, then it’s average is zero on every ball with center at p. We will use the following
generalization of this:

Lemma 5. There exists R̄ > 0 depending on M so that if r ≤ R̄ and u(p) = 0, then
∣

∣

∣

∣

∫

Br(p)

u

∣

∣

∣

∣

≤ 1

3

∫

Br(p)

|u| . (2.5)

Proof. Given a function v, define the spherical average

Iv(s) = s1−n

∫

∂Bs(p)

v . (2.6)

Let d denote the distance in M to p. Differentiating Iv(s) gives

I ′v(s) = s1−n

∫

∂Bs(p)

[

∂v

∂r
+ v

(

∆d+
1− n

s

)]

= s1−n

∫

Bs(p)

∆v + s1−n

∫

∂Bs(p)

v

(

∆d+
1− n

s

)

, (2.7)
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where the second equality used the divergence theorem. On Rn, ∆d + 1−n
d

= 0. On M , as
long as d is small (depending on sup |KM | and lower bound for the injectivity radius of M),
the Hessian comparison theorem (see, e.g., page 4 in [ScY]) gives

∣

∣

∣

∣

∆d+
1− n

d

∣

∣

∣

∣

≤ h(d) , (2.8)

where the function h : [0,∞) → R is continuous, monotone non-decreasing, and satisfies
h(0) = 0. Thus, we see that

|I ′u(s)| ≤ λ s1−n

∣

∣

∣

∣

∫

Bs(p)

u

∣

∣

∣

∣

+ s1−n h(s)

∫

∂Bs(p)

|u| ≤ λ s

n
max
t≤s

|Iu(t)|+ h(s) I|u|(s) . (2.9)

Motivated by this, define the function f by

f(s) = max
t≤s

|Iu(t)| . (2.10)

Observe that f is automatically monotone non-decreasing, f(0) = 0 (since u(p) = 0), and f

is Lipschitz with

f ′(s) ≤ |I ′u(s)| ≤
λ s

n
f(s) + h(s) I|u|(s) , (2.11)

where this inequality is understood in the sense of the limsup of forward difference quotients.
In particular, we have for s ≤ r that

d

ds

(

f(s) e−
λ r s
n

)

≤ h(s) I|u|(s) . (2.12)

Using that f(0) = 0 and integrating this gives for each t ≤ r that

f(t) ≤ e
λ r t
n h(t)

∫ t

0

I|u|(s) ds ≤ e
λ r2

n h(r)

∫ t

0

I|u|(s) ds . (2.13)

By the coarea formula, we have

∣

∣

∣

∣

∫

Br(p)

u

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ r

0

tn−1 Iu(t) dt

∣

∣

∣

∣

≤ rn

n
f(r) ≤ e

λ r2

n h(r)
rn

n

∫ r

0

I|u|(t) dt . (2.14)

Observe that e
λ r2

n is bounded since r is on the order of λ−1/2 and we can make h(r) as small
as we like by taking r small enough (independent of λ). Thus, to finish off the proof, we
need only bound rn

∫ r

0
I|u|(t) dt by a fixed multiple of

∫

Br(p)
|u|. To do this, observe that,

since r is proportional to λ−1/2, the mean value inequality (theorem 1.2 in [LiSc]) gives

sup
Br/2(p)

|u| ≤ C r−n

∫

Br(p)

|u| , (2.15)
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so we get

∫ r

0

I|u|(t) dt =

∫ r
2

0

(

t1−n

∫

∂Bt(p)

|u|
)

dt+

∫ r

r
2

(

t1−n

∫

∂Bt(p)

|u|
)

dt

≤ r

2

(

sup
Br/2(p)

|u|
)

sup
t≤ r

2

Vol(∂Bt(p))

tn−1
+

(

2

r

)n−1 ∫ r

r
2

∫

∂Bt(p)

|u| dt

≤ C1 r
1−n

∫

Br(p)

|u| . (2.16)

Thus, since r ≤ R̄, we get the desired bound and the lemma follows.
�

We are now ready to prove the local lower bound:

Proof. (of Proposition 1). Let q ∈ B r
3
(p) be a point with u(q) = 0. Note that

Br(p) ⊂ B 4r
3
(q) and B 5r

3
(q) ⊂ B2r(p) . (2.17)

Since the scale r is proportional to λ− 1
2 , we can apply the meanvalue inequality (theorem

1.2 in [LiSc]) to u2 to get

sup
B 4r

3
(q)

u2 ≤ C0 r
−n

∫

B2r(p)

u2 ≤ C0 2
d r−n

∫

Br(p)

u2 ≤ C0 2
d r−n

∫

B 4r
3
(q)

u2 , (2.18)

where the second inequality used (2.1) and C0 depends only on n, the geometry of M , and
an upper bound for r2 λ (all of which are fixed).

From now on, all integrals will be over B 4r
3
(q) unless stated otherwise. Using (2.18), we

get the “reverse Hölder” inequality
(
∫

u2

)2

≤ sup u2

(
∫

|u|
)2

≤ C0 2
d r−n

(
∫

u2

) (
∫

|u|
)2

, (2.19)

which simplifies to
∫

u2 ≤ C0 2
d r−n

(
∫

|u|
)2

. (2.20)

Let u+ be the positive part of u, i.e., u+(x) = max{u(x), 0}, and let u− = u+ − u be the
negative part of u. It follows from Lemma 5 that

∫

u+ ≥ 1

3

∫

|u| and
∫

u− ≥ 1

3

∫

|u| . (2.21)

Let B+ denote B 4r
3
(q) ∩ {u > 0} and B− denote B 4r

3
(q) ∩ {u < 0}. Thus, applying Cauchy-

Schwarz to u+ gives

1

9

(
∫

|u|
)2

≤
(
∫

u+

)2

≤ Vol(B+)

∫

u2 ≤ Vol(B+)C0 2
d r−n

(
∫

|u|
)2

, (2.22)
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where the last equality used (2.20). Dividing through by the square of the L1 norm of u
gives a scale-invariant lower bound for the volume of B+

rn

9C0 2d
≤ Vol(B+) . (2.23)

The same argument applies to u− to give the same lower bound for the volume of B−.
Together, these allow us to apply the isoperimetric inequality to get the lower bound for the
measure of the nodal set in B, thus completing the proof of the proposition. �
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