7,623 research outputs found

    Pinning control of spatiotemporal chaos

    Get PDF
    Linear control theory is used to develop an improved localized control scheme for spatially extended chaotic systems, which is applied to a coupled map lattice as an example. The optimal arrangement of the control sites is shown to depend on the symmetry properties of the system, while their minimal density depends on the strength of noise in the system. The method is shown to work in any region of parameter space and requires a significantly smaller number of controllers compared to the method proposed earlier by Hu and Qu [Phys. Rev. Lett. 72, 68 (1994)]. A nonlinear generalization of the method for a 1D lattice is also presented

    Tsallis' q index and Mori's q phase transitions at edge of chaos

    Full text link
    We uncover the basis for the validity of the Tsallis statistics at the onset of chaos in logistic maps. The dynamics within the critical attractor is found to consist of an infinite family of Mori's qq-phase transitions of rapidly decreasing strength, each associated to a discontinuity in Feigenbaum's trajectory scaling function σ\sigma . The value of qq at each transition corresponds to the same special value for the entropic index qq, such that the resultant sets of qq-Lyapunov coefficients are equal to the Tsallis rates of entropy evolution.Comment: Significantly enlarged version, additional figures and references. To be published in Physical Review

    Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    Get PDF
    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as “robustness” for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas

    Do columnar defects produce bulk pinning?

    Full text link
    From magneto-optical imaging performed on heavy-ion irradiated YBaCuO single crystals, it is found that at fields and temperatures where strong single vortex pinning by individual irradiation-induced amorphous columnar defects is to be expected, vortex motion is limited by the nucleation of vortex kinks at the specimen surface rather than by half-loop nucleation in the bulk. In the material bulk, vortex motion occurs through (easy) kink sliding. Depinning in the bulk determines the screening current only at fields comparable to or larger than the matching field, at which the majority of moving vortices is not trapped by an ion track.Comment: 5 pages, 5 figures, submitted to Physical Review Letter

    Aspect-Based Sentiment Analysis Using a Two-Step Neural Network Architecture

    Full text link
    The World Wide Web holds a wealth of information in the form of unstructured texts such as customer reviews for products, events and more. By extracting and analyzing the expressed opinions in customer reviews in a fine-grained way, valuable opportunities and insights for customers and businesses can be gained. We propose a neural network based system to address the task of Aspect-Based Sentiment Analysis to compete in Task 2 of the ESWC-2016 Challenge on Semantic Sentiment Analysis. Our proposed architecture divides the task in two subtasks: aspect term extraction and aspect-specific sentiment extraction. This approach is flexible in that it allows to address each subtask independently. As a first step, a recurrent neural network is used to extract aspects from a text by framing the problem as a sequence labeling task. In a second step, a recurrent network processes each extracted aspect with respect to its context and predicts a sentiment label. The system uses pretrained semantic word embedding features which we experimentally enhance with semantic knowledge extracted from WordNet. Further features extracted from SenticNet prove to be beneficial for the extraction of sentiment labels. As the best performing system in its category, our proposed system proves to be an effective approach for the Aspect-Based Sentiment Analysis

    Rubidium in Metal-Deficient Disk and Halo Stars

    Full text link
    We report the first extensive study of stellar Rb abundances. High-resolution spectra have been used to determine, or set upper limits on, the abundances of this heavy element and the associated elements Y, Zr, and Ba in 44 dwarfs and giants with metallicities spanning the range -2.0 <[Fe/H] < 0.0. In metal-deficient stars Rb is systematically overabundant relative to Fe; we find an average [Rb/Fe] of +0.21 for the 32 stars with [Fe/H] < -0.5 and measured Rb. This behavior contrasts with that of Y, Zr, and Ba, which, with the exception of three new CH stars (HD 23439A and B and BD +5 3640), are consistently slightly deficient relative to Fe in the same stars; excluding the three CH stars, we find the stars with [Fe/H] < -0.5 have average [Y/Fe], [Zr/Fe], and [Ba/Fe] of --0.19 (24 stars), --0.12 (28 stars), and --0.06 (29 stars), respectively. The different behavior of Rb on the one hand and Y, Zr, and Ba on the other can be attributed in part to the fact that in the Sun and in these stars Rb has a large r-process component while Y, Zr, and Ba are mostly s-process elements with only small r-process components. In addition, the Rb s-process abundance is dependent on the neutron density at the s-processing site. Published observations of Rb in s-process enriched red giants indicate a higher neutron density in the metal-poor giants. These observations imply a higher s-process abundance for Rb in metal-poor stars. The calculated combination of the Rb r-process abundance, as estimated for the stellar Eu abundances, and the s-process abundance as estimated for red giants accounts satisfactorily for the observed run of [Rb/Fe] with [Fe/H].Comment: 23 pages, 5 tables, 7 figure
    corecore