21 research outputs found

    Anti-Inflammatory Effect of Fluvastatin on IL-8 Production Induced by Pseudomonas aeruginosa and Aspergillus fumigatus Antigens in Cystic Fibrosis

    Get PDF
    International audienceBACKGROUND: Early in life, patients with cystic fibrosis (CF) are infected with microorganisms including bacteria and fungi, particularly Pseudomonas aeruginosa and Aspergillus fumigatus. Since recent research has identified the anti-inflammatory properties of statins (besides their lipid-lowering effects), we investigated the effect of fluvastatin on the production of the potent neutrophil chemoattractant chemokine, IL-8, in whole blood from CF patients, stimulated by Pseudomonas aeruginosa (LPS) and Aspergillus fumigatus (AFA) antigens. RESULTS: Whole blood from adult patients with CF and from healthy volunteers was collected at the Rennes University Hospital (France). Blood was pretreated for 1 h with fluvastatin (0-300 ”M) and incubated for 24 h with LPS (10 ”g/mL) and/or AFA (diluted 1/200). IL-8 protein levels, quantified by ELISA, were increased in a concentration-dependent manner when cells were stimulated by LPS or AFA. Fluvastatin strongly decreased the levels of IL-8, in a concentration-dependent manner, in whole blood from CF patients. However, its inhibitory effect was decreased or absent in whole blood from healthy subjects. Furthermore, the inhibition induced by fluvastatin in CF whole blood was reversed in the presence of intermediates within the cholesterol biosynthesis pathway, mevalonate, farnesyl pyprophosphate or geranylgeranyl pyrophosphate that activate small GTPases by isoprenylation. CONCLUSIONS: For the first time, the inhibitory effects of fluvastatin on CF systemic inflammation may reveal the important therapeutic potential of statins in pathological conditions associated with the over-production of pro-inflammatory cytokines and chemokines as observed during the manifestation of CF. The anti-inflammatory effect could be related to the modulation of the prenylation of signalling proteins

    A pharmacognostical study of hop,Humulus lupulus L

    No full text

    Present and future of in vitro

    No full text
    The realization, that the immune system can be the target of many chemicals including environmental contaminants and drugs with potentially adverse effects on the host's health, has raised serious concerns within the public and the regulatory agencies. At present, assessment of immunotoxic effects relies on different animal models and several assays have been proposed to characterize immunosuppression and sensitization. The use of whole animals, however, presents many secondary issues, such as expense, ethical concerns, and eventual relevance to risk assessment for humans. Furthermore, due to the new policy on chemicals (REACH), in the European Union, in vitro methods will play a major role in the near future. In addition, there is still a lack of human cell-based immunotoxicity assays for predicting the toxicity of xenobiotics toward the immune system in a simple, fast, economical, and reliable way. Hypersensitivity and immunosuppression, for which animal models have been developed and validated, are considered the primary focus for developing in vitro methods in immunotoxicology. Nevertheless, in vitro assays, as well as in vivo models, to detect immunostimulation and autoimmunity are also needed. Even if no validated alternative in vitro tests to assess immunotoxicity exist, in the last decade, much progress has been made toward these assays. Such models can be, at least, used for the pre-screening and hazard identification of unintended immunosuppression and contact hypersensitivity of direct immunotoxicants. Following a brief introduction to immunotoxicology and to in vivo models use to assess immunotoxicity, this manuscript will review the state-of-the-art in the field of in vitro immunotoxicit

    The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: results from the European Project ACuteTox.

    No full text
    ACuteTox is a project within the 6th European Framework Programme which had as one of its goals to develop, optimise and prevalidate a non-animal testing strategy for predicting human acute oral toxicity. In its last 6 months, a challenging exercise was conducted to assess the predictive capacity of the developed testing strategies and final identification of the most promising ones. Thirty-two chemicals were tested blind in the battery of in vitro and in silico methods selected during the first phase of the project. This paper describes the classification approaches studied: single step procedures and two step tiered testing strategies. In summary, four in vitro testing strategies were proposed as best performing in terms of predictive capacity with respect to the European acute oral toxicity classification. In addition, a heuristic testing strategy is suggested that combines the prediction results gained from the neutral red uptake assay performed in 3T3 cells, with information on neurotoxicity alerts identified by the primary rat brain aggregates test method. Octanol-water partition coefficients and in silico prediction of intestinal absorption and blood-brain barrier passage are also considered. This approach allows to reduce the number of chemicals wrongly predicted as not classified (LD50>2000 mg/kg b.w.)

    Humulus lupulus L., a very popular beer ingredient and medicinal plant: overview of its phytochemistry, its bioactivity, and its biotechnology

    No full text
    National audienceHumulus lupulus L. (Cannabaceae), commonly named hop, is widely grown around the world for its use in the brewing industry. Its female inflorescences (hops) are particularly prized by brewers because they produce some secondary metabolites that confer bitterness, aromas and antiseptic properties to the beer. These sought-after metabolites include terpenes and sesquiterpenes, found in essential oil, but also prenylated phenolic compounds, mainly acylphloroglucinols (bitter acids) from the series of alpha-acids (humulone derivatives). These metabolites have shown numerous biological activities, including among others, antimicrobial, sedative and estrogenic properties. This review provides an inventory of hop's chemistry, with an emphasis on the secondary metabolites and their biological activities. These compounds of biological interest are essentially produced in female inflorescences, while other parts of the plant only synthetize low quantities of them. Lastly, our article provides an overview of the research in plant biotechnology that could bring alternatives for hops metabolites production
    corecore