738 research outputs found

    Truthful Mechanisms for Matching and Clustering in an Ordinal World

    Full text link
    We study truthful mechanisms for matching and related problems in a partial information setting, where the agents' true utilities are hidden, and the algorithm only has access to ordinal preference information. Our model is motivated by the fact that in many settings, agents cannot express the numerical values of their utility for different outcomes, but are still able to rank the outcomes in their order of preference. Specifically, we study problems where the ground truth exists in the form of a weighted graph of agent utilities, but the algorithm can only elicit the agents' private information in the form of a preference ordering for each agent induced by the underlying weights. Against this backdrop, we design truthful algorithms to approximate the true optimum solution with respect to the hidden weights. Our techniques yield universally truthful algorithms for a number of graph problems: a 1.76-approximation algorithm for Max-Weight Matching, 2-approximation algorithm for Max k-matching, a 6-approximation algorithm for Densest k-subgraph, and a 2-approximation algorithm for Max Traveling Salesman as long as the hidden weights constitute a metric. We also provide improved approximation algorithms for such problems when the agents are not able to lie about their preferences. Our results are the first non-trivial truthful approximation algorithms for these problems, and indicate that in many situations, we can design robust algorithms even when the agents may lie and only provide ordinal information instead of precise utilities.Comment: To appear in the Proceedings of WINE 201

    Electric-field-induced coherent coupling of the exciton states in a single quantum dot

    Full text link
    The signature of coherent coupling between two quantum states is an anticrossing in their energies as one is swept through the other. In single semiconductor quantum dots containing an electron-hole pair the eigenstates form a two-level system that can be used to demonstrate quantum effects in the solid state, but in all previous work these states were independent. Here we describe a technique to control the energetic splitting of these states using a vertical electric field, facilitating the observation of coherent coupling between them. Near the minimum splitting the eigenstates rotate in the plane of the sample, being orientated at 45{\deg} when the splitting is smallest. Using this system we show direct control over the exciton states in one quantum dot, leading to the generation of entangled photon pairs

    Spin effects in single electron tunneling

    Full text link
    An important consequence of the discovery of giant magnetoresistance in metallic magnetic multilayers is a broad interest in spin dependent effects in electronic transport through magnetic nanostructures. An example of such systems are tunnel junctions -- single-barrier planar junctions or more complex ones. In this review we present and discuss recent theoretical results on electron and spin transport through ferromagnetic mesoscopic junctions including two or more barriers. Such systems are also called ferromagnetic single-electron transistors. We start from the situation when the central part of a device has the form of a magnetic (or nonmagnetic) metallic nanoparticle. Transport characteristics reveal then single-electron charging effects, including the Coulomb staircase, Coulomb blockade, and Coulomb oscillations. Single-electron ferromagnetic transistors based on semiconductor quantum dots and large molecules (especially carbon nanotubes) are also considered. The main emphasis is placed on the spin effects due to spin-dependent tunnelling through the barriers, which gives rise to spin accumulation and tunnel magnetoresistance. Spin effects also occur in the current-voltage characteristics, (differential) conductance, shot noise, and others. Transport characteristics in the two limiting situations of weak and strong coupling are of particular interest. In the former case we distinguish between the sequential tunnelling and cotunneling regimes. In the strong coupling regime we concentrate on the Kondo phenomenon, which in the case of transport through quantum dots or molecules leads to an enhanced conductance and to a pronounced zero-bias Kondo peak in the differential conductance.Comment: topical review (36 figures, 65 pages), to be published in J. Phys.: Condens. Matte

    Epstein-barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids

    Get PDF
    We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE: This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed

    Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3).

    Get PDF
    Inducible expression of human immunodeficiency virus (HIV) is regulated by a cellular transcription factor, nuclear factor kappa B (NF-kappa B). NF-kappa B is composed of distinct subunits; five independent genes, NFKB1(p105), NFKB2(p100), RelA(p65), c-rel and relB, that encode related proteins that bind to kappa B DNA elements have been isolated. We have previously found that NFKB2(p49/p52) acts in concert with RelA(p65) to stimulate the HIV enhancer in Jurkat T-leukemia cells. Here we examine the biochemical basis for the transcriptional regulation of HIV by NFKB2. Using Scatchard analysis, we have determined the dissociation constants of homodimeric p49 and heterodimeric p49/p65 for binding to the HIV kappa B site. p49 has a approximately 18-fold-lower affinity for the HIV kappa B site (KD = 69.1 pM) than does the approximately 50-kDa protein NFKB1(p50) derived from p105 (KD = 3.9 pM). In contrast, the affinity of heterodimeric NFKB2(p49)/RelA(p65) for this site is approximately 6-fold higher (KD = 11.8 pM) than that of p49 alone. Consistent with these findings, in vitro transcription was stimulated 18-fold by the addition of preformed, heterodimeric NFKB2(p49)/RelA(p65) protein. Transcriptional activation of the HIV enhancer was also subject to regulation by recently cloned I kappa B-alpha(MAD-3). Recombinant I kappa B-alpha(MAD-3) inhibited the DNA binding activity of p65, p49/p65, and p50/p65 but stimulated the binding of NFKB2(p49) or NFKB1(p50). Functional activation of an HIV reporter plasmid by p49/p65 in transiently transfected Jurkat T-leukemia cells was also inhibited by coexpression of MAD-3. These data suggest that binding of the NFKB2 subunit to the HIV enhancer is facilitated by RelA(p65) and that this NFKB2(p49)/p65 heterodimeric complex mediates transcriptional activation which is subject to regulation by MAD-3

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.Comment: 7 pages, 4 figures + 1 tabl

    Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.Comment: 6 pages, 3 figures. Minor changes from review process in Phys. Rev. Lett. Plain text tables of data in STAR publications may be found at http://www.star.bnl.gov/central/publications
    corecore