5,534 research outputs found

    EarthN: A new Earth System Nitrogen Model

    Get PDF
    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and provides feedbacks on oxygen and nutrient cycles. To investigate the Earth system nitrogen cycle over geologic history, we have constructed a new nitrogen cycle model: EarthN. This model is driven by mantle cooling, links biologic nitrogen cycling to phosphate and oxygen, and incorporates geologic and biologic fluxes. Model output is consistent with large (2-4x) changes in atmospheric mass over time, typically indicating atmospheric drawdown and nitrogen sequestration into the mantle and continental crust. Critical controls on nitrogen distribution include mantle cooling history, weathering, and the total Bulk Silicate Earth+atmosphere nitrogen budget. Linking the nitrogen cycle to phosphorous and oxygen levels, instead of carbon as has been previously done, provides new and more dynamic insight into the history of nitrogen on the planet.Comment: 36 pages, 12 figure

    Beyond R(D())\mathcal{R}(D^{(*)}) with the general 2HDM-III for bcτνb\to c\tau\nu

    Full text link
    We review the parameter regions allowed by measurements of R(D())\mathcal{R}(D^{(*)}) and by a theoretical limit on B(Bcτν){\cal B}(B_{c}\to\tau\nu) in terms of generic scalar and pseudoscalar new physics couplings, gsg_s and gpg_p. We then use these regions as constraints to predict the ranges for additional observables in bcτνb\to c\tau\nu including the differential decay distributions dΓ/dq2d\Gamma/dq^{2}; the ratios R(J/ψ)\mathcal{R}(J/\psi) and R(Λc)\mathcal{R}(\Lambda_{c}); and the tau-lepton polarisation in BD()τνB\to D^{(\star)}\tau\nu, with emphasis on the CP violating normal polarisation. Finally we map the allowed regions in gsg_s and gpg_p into the parameters of four versions of the Yukawa couplings of the general 2HDM-III model. We find that the model is still viable but could be ruled out by a confirmation of a large R(J/ψ)\mathcal{R}(J/\psi).Comment: 27 pages, 11 figures, major changes with new analysis and plot

    Genome-wide profiling of uncapped mRNA

    Get PDF
    Gene transcripts are under extensive posttranscriptional regulation, including the regulation of their stability. A major route for mRNA degradation produces uncapped mRNAs, which can be generated by decapping enzymes, endonucleases, and small RNAs. Profiling uncapped mRNA molecules is important for the understanding of the transcriptome, whose composition is determined by a balance between mRNA synthesis and degradation. In this chapter, we describe a method to profile these uncapped mRNAs at the genome scale

    Particle Dynamics in the Rising Plume at Piccard Hydrothermal Field, Mid-Cayman Rise

    Get PDF
    Processes active in rising hydrothermal plumes, such as precipitation, particle aggregation, and biological growth, affect particle size distributions and can exert important influences on the biogeochemical impact of submarine venting of iron to the oceans and their sediments. However, observations to date of particle size distribution within these systems are both limited and conflicting. In a novel buoyant hydrothermal plume study at the recently discovered high-temperature (398°C) Piccard Hydrothermal Field, Mid-Cayman Rise, we report optical measurements of particle size distributions (PSDs). We describe the plume PSD in terms of a simple, power-law model commonly used in studies of upper and coastal ocean particle dynamics. Observed PSD slopes, derived from spectral beam attenuation and laser diffraction measurements, are among the highest found to date anywhere in the ocean and ranged from 2.9 to 8.5. Beam attenuation at 650 nm ranged from near zero to a rarely observed maximum of 192 m-1 at 3.5 m above the vent. We did not find large (\u3e100 µm) particles that would settle rapidly to the sediments. Instead, beam attenuation was well-correlated to total iron, suggesting the first-order importance of particle dilution, rather than precipitation or dissolution, in the rising plume at Piccard. Our observations at Piccard caution against the assumption of rapid deposition of hydrothermal, particulate metal fluxes, and illustrate the need for more particle size and composition measurements across a broader range of sites, globally

    Extension of PRISM by Synthesis of Optimal Timeouts in Fixed-Delay CTMC

    Full text link
    We present a practically appealing extension of the probabilistic model checker PRISM rendering it to handle fixed-delay continuous-time Markov chains (fdCTMCs) with rewards, the equivalent formalism to the deterministic and stochastic Petri nets (DSPNs). fdCTMCs allow transitions with fixed-delays (or timeouts) on top of the traditional transitions with exponential rates. Our extension supports an evaluation of expected reward until reaching a given set of target states. The main contribution is that, considering the fixed-delays as parameters, we implemented a synthesis algorithm that computes the epsilon-optimal values of the fixed-delays minimizing the expected reward. We provide a performance evaluation of the synthesis on practical examples

    Fermion Helicity Flip Induced by Torsion Field

    Get PDF
    We show that in theories of gravitation with torsion the helicity of fermion particles is not conserved and we calculate the probability of spin flip, which is related to the anti-symmetric part of affine connection. Some cosmological consequences are discussed.Comment: 6 pages, to appear in Europhysics Letter

    Mechanical characterization and validation of biocomposites in small ship hull construction. Life Cycle Assessment

    Get PDF
    Actualmente, la mayoría de las embarcaciones de pequeña eslora se fabrican mediante laminación manual de resina poliéster reforzada con fibra de vidrio. Los principales inconvenientes de la utilización de estos materiales compuestos son: la dependencia de los hidrocarburos para la síntesis de las resinas, el elevado coste energético para la obtención de la fibra de vidrio y la emisión de compuestos volátiles nocivos en el proceso de fabricación. En el presente trabajo, se analizan las ventajas de utilizar laminados de resina de origen renovable reforzada con fibra natural de lino. Para ello, se preparan probetas normalizadas y se someten a ensayos mecánicos de tracción y flexión. A partir de las propiedades obtenidas, se diseña una embarcación de eslora menor de 24 metros siguiendo las indicaciones de la norma internacional ISO 12215-5. Los resultados indican que pese a necesitar mayores espesores de laminado, el peso final de la embarcación se reduce un 12% utilizando biocomposites. El análisis por Elementos Finitos (FEM) subraya la posibilidad de optimizar estructuralmente el diseño de la embarcación. Finalmente, el Análisis del Ciclo de Vida (ACV) pone de manifiesto una mejora medioambiental de la embarcación fabricada con biocomposite frente a la fibra de vidrio. Sin embargo, dicha mejora está limitada por la transformación de suelos y la elevada huella hídrica de la fibra de lino en su proceso productivo.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Assessing Code Authorship: The Case of the Linux Kernel

    Get PDF
    Code authorship is a key information in large-scale open source systems. Among others, it allows maintainers to assess division of work and identify key collaborators. Interestingly, open-source communities lack guidelines on how to manage authorship. This could be mitigated by setting to build an empirical body of knowledge on how authorship-related measures evolve in successful open-source communities. Towards that direction, we perform a case study on the Linux kernel. Our results show that: (a) only a small portion of developers (26 %) makes significant contributions to the code base; (b) the distribution of the number of files per author is highly skewed --- a small group of top authors (3 %) is responsible for hundreds of files, while most authors (75 %) are responsible for at most 11 files; (c) most authors (62 %) have a specialist profile; (d) authors with a high number of co-authorship connections tend to collaborate with others with less connections.Comment: Accepted at 13th International Conference on Open Source Systems (OSS). 12 page

    Spectral line shape of resonant four-wave mixing induced by broad-bandwidth lasers

    No full text
    We present a theoretical and experimental study of the line shape of resonant four-wave mixing induced by broad-bandwidth laser radiation that revises the theory of Meacher, Smith, Ewart, and Cooper (MSEC) [Phys. Rev. A 46, 2718 (1992)]. We adopt the same method as MSEC but correct for an invalid integral used to average over the distribution of atomic velocities. The revised theory predicts a Voigt line shape composed of a homogeneous, Lorentzian component, defined by the collisional rate Γ, and an inhomogeneous, Doppler component, which is a squared Gaussian. The width of the inhomogeneous component is reduced by a factor of √2 compared to the simple Doppler width predicted by MSEC. In the limit of dominant Doppler broadening, the width of the homogeneous component is predicted to be 4Γ, whereas in the limit of dominant homogeneous broadening, the predicted width is 2Γ. An experimental measurement is reported of the line shape of the four-wave-mixing signal using a broad-bandwidth, "modeless", laser resonant with the Q1 (6) line of the A2 Σ - X2 Π(0,0) system of the hydroxyl radical. The measured widths of the Voigt components were found to be consistent with the predictions of the revised theory

    Time-series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geobiology 10 (2012): 178-192, doi:10.1111/j.1472-4669.2011.00315.xWe deployed sediment traps adjacent to two active hydrothermal vents at 9°50’N on the East Pacific Rise (EPR) to assess variability in bacterial community structure associated with plume particles on the time scale of weeks to months, to determine if an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, 232Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift towards the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exists on the plume environment that physically and chemically connects them. By employing sediment traps for a time series approach to sampling, we show that bacterial community composition on plume particles changes on time scales much shorter than previously known.This work was supported by the NSF Marine Geology and Geophysics program, the Science and Technology program, and the Gordon and Betty Moore Foundation
    corecore