55 research outputs found
The time evolution of cosmological redshift as a test of dark energy
The variation of the expansion rate of the Universe with time produces an
evolution in the cosmological redshift of distant sources (for example quasar
Lyman- absorption lines), that might be directly observed by future
ultra stable, high-resolution spectrographs (such as CODEX) coupled to
extremely large telescopes (such as European Southern Observatory's Extremely
Large Telescope, ELT). This would open a new window to explore the physical
mechanism responsible for the current acceleration of the Universe. We
investigate the evolution of cosmological redshift from a variety of dark
energy models, and compare it with simulated data. We perform a Fisher matrix
analysis and discuss the prospects for constraining the parameters of these
models and for discriminating among competing candidates. We find that, because
of parameter degeneracies, and of the inherent technical difficulties involved
in this kind of observations, the uncertainties on parameter reconstruction can
be rather large unless strong external priors are assumed. However, the method
could be a valuable complementary cosmological tool, and give important
insights on the dynamics of dark energy, not obtainable using other probes.Comment: 9 pages, 2 figures. Matching published versio
Constraints on coupled dark energy using CMB data from WMAP and SPT
We consider the case of a coupling in the dark cosmological sector, where a
dark energy scalar field modifies the gravitational attraction between dark
matter particles. We find that the strength of the coupling {\beta} is
constrained using current Cosmic Microwave Background (CMB) data, including
WMAP7 and SPT, to be less than 0.063 (0.11) at 68% (95%) confidence level.
Further, we consider the additional effect of the CMB-lensing amplitude,
curvature, effective number of relativistic species and massive neutrinos and
show that the bound from current data on {\beta} is already strong enough to be
rather stable with respect to any of these variables. The strongest effect is
obtained when we allow for massive neutrinos, in which case the bound becomes
slightly weaker, {\beta} < 0.084(0.14). A larger value of the effective number
of relativistic degrees of freedom favors larger couplings between dark matter
and dark energy as well as values of the spectral index closer to 1. Adding the
present constraints on the Hubble constant, as well as from baryon acoustic
oscillations and supernovae Ia, we find {\beta} < 0.050(0.074). In this case we
also find an interesting likelihood peak for {\beta} = 0.041 (still compatible
with 0 at 1{\sigma}). This peak comes mostly from a slight difference between
the Hubble parameter HST result and the WMAP7+SPT best fit. Finally, we show
that forecasts of Planck+SPT mock data can pin down the coupling to a precision
of better than 1% and detect whether the marginal peak we find at small non
zero coupling is a real effect.Comment: 22 pages, 17 figure
Testing coupled dark energy with next-generation large-scale observations
Coupling dark energy to dark matter provides one of the simplest way to
effectively modify gravity at large scales without strong constraints from
local (i.e. solar system) observations. Models of coupled dark energy have been
studied several times in the past and are already significantly constrained by
cosmic microwave background experiments. In this paper we estimate the
constraints that future large-scale observations will be able to put on the
coupling and in general on all the parameters of the model. We combine cosmic
microwave background, tomographic weak lensing, redshift distortions and power
spectrum probes. We show that next-generation observations can improve the
current constraint on the coupling to dark matter by two orders of magnitude;
this constraint is complementary to the current solar-system bounds on a
coupling to baryons.Comment: 18 pages, 12 figs, 8 table
Mapping the galactic gravitational potential with peculiar acceleration
It has been suggested recently that the change in cosmological redshift (the
Sandage test of expansion) could be observed in the next generation of large
telescopes and ultra-stable spectrographs. In a recent paper we estimated the
change of peculiar velocity, i.e. the peculiar acceleration, in nearby galaxies
and clusters and shown it to be of the same order of magnitude as the typical
cosmological signal. Mapping the acceleration field allows for a reconstruction
of the galactic gravitational potential without assuming virialization. In this
paper we focus on the peculiar acceleration in our own Galaxy, modeled as a
Kuzmin disc and a dark matter spherical halo. We estimate the peculiar
acceleration for all known Galactic globular clusters and find some cases with
an expected velocity shift in excess of 20 cm/sec for observations fifteen
years apart, well above the typical cosmological acceleration. We then compare
the predicted signal for a MOND (modified Newtonian dynamics) model in which
the spherical dark matter halo is absent. We find that the signal pattern is
qualitatively different, showing that the peculiar acceleration field could be
employed to test competing theories of gravity. However the difference seems
too small to be detectable in the near future.Comment: 11 pages, 10 figures, 3 tables, minor changes, accepted for
publication by MNRA
Anisotropic dark energy and ellipsoidal universe
A cosmological model with anisotropic dark energy is analyzed. The amount of
deviation from isotropy of the equation of state of dark energy, the skewness
\delta, generates an anisotropization of the large-scale geometry of the
Universe, quantifiable by means of the actual shear \Sigma_0. Requiring that
the level of cosmic anisotropization at the time of decoupling is such to solve
the "quadrupole problem" of cosmic microwave background radiation, we find that
|\delta| \sim 10^{-4} and |\Sigma_0| \sim 10^{-5}, compatible with existing
limits derived from the magnitude-redshift data on type Ia supernovae.Comment: 10 pages, 3 figures. Revised version to match published version.
References adde
ISW effect in Unified Dark Matter Scalar Field Cosmologies: an analytical approach
We perform an analytical study of the Integrated Sachs-Wolfe (ISW) effect
within the framework of Unified Dark Matter models based on a scalar field
which aim at a unified description of dark energy and dark matter. Computing
the temperature power spectrum of the Cosmic Microwave Background anisotropies
we are able to isolate those contributions that can potentially lead to strong
deviations from the usual ISW effect occurring in a CDM universe. This
helps to highlight the crucial role played by the sound speed in the Unified
Dark Matter models. Our treatment is completely general in that all the results
depend only on the speed of sound of the dark component and thus it can be
applied to a variety of unified models, including those which are not described
by a scalar field but relies on a single dark fluid.Comment: 15 pages, LateX file; one comment after Eq.(36) and formula (44)
added in order to underline procedure and main results. Accepted for
publication in JCAP; some typos correcte
Constraints on perfect fluid and scalar field dark energy models from future redshift surveys
We discuss the constraints that future photometric and spectroscopic redshift
surveys can put on dark energy through the baryon oscillations of the power
spectrum. We model the dark energy either with a perfect fluid or a scalar
field and take into account the information contained in the linear growth
function. We show that the growth function helps to break the degeneracy in the
dark energy parameters and reduce the errors on roughly by 30% making
more appealing multicolor surveys based on photometric redshifts. We find that
a 200 square degrees spectroscopic survey reaching can constrain
to within and to using photometric redshifts with absolute uncertainty
of 0.02. In the scalar field case we show that the slope of the inverse
power-law potential for dark energy can be constrained to
(spectroscopic redshifts) or (photometric redshifts), i.e.
better than with future ground-based supernovae surveys or CMB data.Comment: 27 pages, submitted to MNRA
Cosmological scalar fields that mimic the cosmological model
We look for cosmologies with a scalar field (dark energy without cosmological
constant), which mimic the standard cosmological model yielding
exactly the same large-scale geometry described by the evolution of the Hubble
parameter (i.e. photometric distance and angular diameter distance as functions
on ). Asymptotic behavior of the field solutions is studied in the case of
spatially flat Universe with pressureless matter and separable scalar field
Lagrangians (power-law kinetic term + power-law potential). Exact analytic
solutions are found in some special cases. A number of models have the field
solutions with infinite behavior in the past or even singular behavior at
finite redshifts. We point out that introduction of the cosmological scalar
field involves some degeneracy leading to lower precision in determination of
. To remove this degeneracy additional information is needed beyond
the data on large-scale geometry.Comment: VIII International Conference "Relativistic Astrophysics, Gravitation
and Cosmology": May 21-23, 2008, Kyiv, Ukrain
Light-cone averaging in cosmology: formalism and applications
We present a general gauge invariant formalism for defining cosmological
averages that are relevant for observations based on light-like signals. Such
averages involve either null hypersurfaces corresponding to a family of past
light-cones or compact surfaces given by their intersection with timelike
hypersurfaces. Generalized Buchert-Ehlers commutation rules for derivatives of
these light-cone averages are given. After introducing some adapted "geodesic
light-cone" coordinates, we give explicit expressions for averaging the
redshift to luminosity-distance relation and the so-called "redshift drift" in
a generic inhomogeneous Universe.Comment: 20 pages, 2 figures. Comments and references added, typos corrected.
Version accepted for publication in JCA
A step towards testing general relativity using weak gravitational lensing and redshift surveys
Using the linear theory of perturbations in General Relativity, we express a
set of consistency relations that can be observationally tested with current
and future large scale structure surveys. We then outline a stringent
model-independent program to test gravity on cosmological scales. We illustrate
the feasibility of such a program by jointly using several observables like
peculiar velocities, galaxy clustering and weak gravitational lensing. After
addressing possible observational or astrophysical caveats like galaxy bias and
redshift uncertainties, we forecast in particular how well one can predict the
lensing signal from a cosmic shear survey using an over-lapping galaxy survey.
We finally discuss the specific physics probed this way and illustrate how
gravity models would fail such a test.Comment: 12 pages, 10 figure
- …
